TahsinZaman commited on
Commit
50d664d
·
1 Parent(s): 63e0200

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.06 +/- 0.66
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.61 +/- 0.67
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df9fb9038c64e5be211236e69ee67b770c077170d868c6b351cdd2729326eafd
3
- size 108130
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:646392c79636c9c965500ebe27898b82cf7bd724ca5a05143959dfba86a09fef
3
+ size 107803
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0dae498160>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f0dae496e80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -24,7 +24,7 @@
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1681334466923703674,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAEV7ZPigCZrzY+Qo/EV7ZPigCZrzY+Qo/EV7ZPigCZrzY+Qo/EV7ZPigCZrzY+Qo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALNC/vwclE78nq9W/7XiBP2CQGj7DB2M/cwyAP72miz+kDU8+2XWov+ClwL6Ov04/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAARXtk+KAJmvNj5Cj/M8505oJLPOT8/2zkRXtk+KAJmvNj5Cj/M8505oJLPOT8/2zkRXtk+KAJmvNj5Cj/M8505oJLPOT8/2zkRXtk+KAJmvNj5Cj/M8505oJLPOT8/2zmUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.4245458 -0.0140386 0.5428748]\n [ 0.4245458 -0.0140386 0.5428748]\n [ 0.4245458 -0.0140386 0.5428748]\n [ 0.4245458 -0.0140386 0.5428748]]",
38
- "desired_goal": "[[-1.4985404 -0.57478374 -1.6692857 ]\n [ 1.0115029 0.15094137 0.8868372 ]\n [ 1.0003799 1.091026 0.20220047]\n [-1.3160964 -0.37626553 0.8076104 ]]",
39
- "observation": "[[ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]\n [ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]\n [ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]\n [ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6LbDvTrNFr4IdiY+JlIDPsVcmj3f0YI9k2QCPXRawTxv0jc9+XEzPc0lnzvzJJU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.09556371 -0.14726725 0.16255963]\n [ 0.12824306 0.07537226 0.06387686]\n [ 0.0318342 0.0236027 0.04487842]\n [ 0.04380986 0.0048568 0.29129753]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,7 +56,7 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILscrED2pCsCUhpRSlIwBbJRLMowBdJRHQKY8X2B8QZp1fZQoaAZoCWgPQwg0Z33KMVkMwJSGlFKUaBVLMmgWR0CmPA1lGwzMdX2UKGgGaAloD0MIWfePhehQCsCUhpRSlGgVSzJoFkdApju6EFnqV3V9lChoBmgJaA9DCJ4mM95WegLAlIaUUpRoFUsyaBZHQKY7ZwSamXR1fZQoaAZoCWgPQwgSSl8IOc8VwJSGlFKUaBVLMmgWR0CmPTTjFQ2udX2UKGgGaAloD0MICfoLPWK0CsCUhpRSlGgVSzJoFkdApjzi4FzMinV9lChoBmgJaA9DCNlaXyS0RQnAlIaUUpRoFUsyaBZHQKY8j5XU6Pt1fZQoaAZoCWgPQwiF7/0N2isHwJSGlFKUaBVLMmgWR0CmPDyOaOPvdX2UKGgGaAloD0MIHNDSFWwDDcCUhpRSlGgVSzJoFkdApj4U+JP69HV9lChoBmgJaA9DCMCy0qQU9ATAlIaUUpRoFUsyaBZHQKY9w12JSBN1fZQoaAZoCWgPQwgaTpmbbwQGwJSGlFKUaBVLMmgWR0CmPXAOz6acdX2UKGgGaAloD0MIBHRfzmx3CMCUhpRSlGgVSzJoFkdApj0dCb+cY3V9lChoBmgJaA9DCE0VjErqlBPAlIaUUpRoFUsyaBZHQKY+7e67NB51fZQoaAZoCWgPQwjBpzl5kakJwJSGlFKUaBVLMmgWR0CmPpvva11GdX2UKGgGaAloD0MIxcVRuYkKEMCUhpRSlGgVSzJoFkdApj5Iood+5XV9lChoBmgJaA9DCFe0Oc5tAhDAlIaUUpRoFUsyaBZHQKY99Y9Pk7x1fZQoaAZoCWgPQwgd6KG2DWP+v5SGlFKUaBVLMmgWR0CmP8bO3UhFdX2UKGgGaAloD0MIl43O+SluFMCUhpRSlGgVSzJoFkdApj904JeE7HV9lChoBmgJaA9DCPeTMT7MHgvAlIaUUpRoFUsyaBZHQKY/IZCv5gx1fZQoaAZoCWgPQwhh/3Vu2owKwJSGlFKUaBVLMmgWR0CmPs6Ei+tbdX2UKGgGaAloD0MIDFhyFYvfC8CUhpRSlGgVSzJoFkdApkCiya/h2nV9lChoBmgJaA9DCO2A64oZoRjAlIaUUpRoFUsyaBZHQKZAUMHbAUN1fZQoaAZoCWgPQwiU2/Y96i8MwJSGlFKUaBVLMmgWR0CmP/10tAcDdX2UKGgGaAloD0MIijxJumZSDcCUhpRSlGgVSzJoFkdApj+qagElmnV9lChoBmgJaA9DCHlXPWAeshfAlIaUUpRoFUsyaBZHQKZBe/rSmZV1fZQoaAZoCWgPQwjncRjMXwEQwJSGlFKUaBVLMmgWR0CmQSoW56MSdX2UKGgGaAloD0MIq3XicrxCG8CUhpRSlGgVSzJoFkdApkDWwosqa3V9lChoBmgJaA9DCJWbqKW5FQfAlIaUUpRoFUsyaBZHQKZAg6z3RHB1fZQoaAZoCWgPQwiEg72JIakbwJSGlFKUaBVLMmgWR0CmQlU6gdwOdX2UKGgGaAloD0MIl+Kqsu/qDMCUhpRSlGgVSzJoFkdApkIDPGACn3V9lChoBmgJaA9DCLlQ+dfyChDAlIaUUpRoFUsyaBZHQKZBr/EwWWR1fZQoaAZoCWgPQwinJVZGI18RwJSGlFKUaBVLMmgWR0CmQV0Cih38dX2UKGgGaAloD0MIIF9CBYeXDsCUhpRSlGgVSzJoFkdApkMxHG0eEXV9lChoBmgJaA9DCOmbNA2KxgfAlIaUUpRoFUsyaBZHQKZC34/NZ/11fZQoaAZoCWgPQwiC5QgZyHMKwJSGlFKUaBVLMmgWR0CmQow9ic5KdX2UKGgGaAloD0MI/FOqRNk7BcCUhpRSlGgVSzJoFkdApkI5ZW7vonV9lChoBmgJaA9DCB/ylqsfOxLAlIaUUpRoFUsyaBZHQKZEDh2nsLR1fZQoaAZoCWgPQwhnSBXFqzwSwJSGlFKUaBVLMmgWR0CmQ7wdjoZAdX2UKGgGaAloD0MIUI2XbhJDDcCUhpRSlGgVSzJoFkdApkNo5HVf/nV9lChoBmgJaA9DCG9JDtjVxBLAlIaUUpRoFUsyaBZHQKZDFekYXO51fZQoaAZoCWgPQwifru5YbJMawJSGlFKUaBVLMmgWR0CmROh9b5dodX2UKGgGaAloD0MIB+3Vx0N/D8CUhpRSlGgVSzJoFkdApkSXCGetjnV9lChoBmgJaA9DCL6iW6/pgQXAlIaUUpRoFUsyaBZHQKZERO6/Zdx1fZQoaAZoCWgPQwgLthFPdhMRwJSGlFKUaBVLMmgWR0CmQ/JGvwEydX2UKGgGaAloD0MI7fSDukihBMCUhpRSlGgVSzJoFkdApkXGq1gH/3V9lChoBmgJaA9DCFBz8iITeCDAlIaUUpRoFUsyaBZHQKZFdLAYYSB1fZQoaAZoCWgPQwjSbYlccAYJwJSGlFKUaBVLMmgWR0CmRSF0HQhPdX2UKGgGaAloD0MItafknNgjBMCUhpRSlGgVSzJoFkdApkTOa4MF2XV9lChoBmgJaA9DCETBjClYwwvAlIaUUpRoFUsyaBZHQKZG9RUm2LJ1fZQoaAZoCWgPQwhbW3heKhYQwJSGlFKUaBVLMmgWR0CmRqOF6AvtdX2UKGgGaAloD0MIpztPPGeLCcCUhpRSlGgVSzJoFkdApkZQs7MgU3V9lChoBmgJaA9DCA3BcRk3RRbAlIaUUpRoFUsyaBZHQKZF/lFMIu51fZQoaAZoCWgPQwjCa5c2HDYMwJSGlFKUaBVLMmgWR0CmSEahpQDWdX2UKGgGaAloD0MIvw0xXvPKDMCUhpRSlGgVSzJoFkdApkf1J17pmnV9lChoBmgJaA9DCCrJOhxdBRDAlIaUUpRoFUsyaBZHQKZHop4rz5J1fZQoaAZoCWgPQwiWI2Qgz44KwJSGlFKUaBVLMmgWR0CmR1AlfJFLdX2UKGgGaAloD0MIXHSy1Hq/DcCUhpRSlGgVSzJoFkdApknJfF72MHV9lChoBmgJaA9DCBpPBHEeDg/AlIaUUpRoFUsyaBZHQKZJeGZ/kNp1fZQoaAZoCWgPQwhLkBFQ4agBwJSGlFKUaBVLMmgWR0CmSSXTd+G5dX2UKGgGaAloD0MIdlJflnb6EMCUhpRSlGgVSzJoFkdApkjT28IzFnV9lChoBmgJaA9DCESn591YQBHAlIaUUpRoFUsyaBZHQKZLW67ulXR1fZQoaAZoCWgPQwjV6xaBsV4GwJSGlFKUaBVLMmgWR0CmSwpQtSQ6dX2UKGgGaAloD0MIG/LPDOJDEMCUhpRSlGgVSzJoFkdApkq3mPo3aXV9lChoBmgJaA9DCLqkarsJ7hHAlIaUUpRoFUsyaBZHQKZKZSKm8/V1fZQoaAZoCWgPQwjEJ51IMEURwJSGlFKUaBVLMmgWR0CmTNE4WDYidX2UKGgGaAloD0MIBtfc0f+SBMCUhpRSlGgVSzJoFkdApkx/zreImHV9lChoBmgJaA9DCH8UdeYeMgTAlIaUUpRoFUsyaBZHQKZMLRtP5591fZQoaAZoCWgPQwgNjLysiYUMwJSGlFKUaBVLMmgWR0CmS9qrzXjEdX2UKGgGaAloD0MIsTOFzmtMCMCUhpRSlGgVSzJoFkdApk5B8neBQXV9lChoBmgJaA9DCFN1j2yuqhDAlIaUUpRoFUsyaBZHQKZN8JUHY6J1fZQoaAZoCWgPQwiyuP/IdHgRwJSGlFKUaBVLMmgWR0CmTZ433pOfdX2UKGgGaAloD0MIe8GnOXlBEcCUhpRSlGgVSzJoFkdApk1LuQZGa3V9lChoBmgJaA9DCDOjHw2nTAfAlIaUUpRoFUsyaBZHQKZPVFQVKwp1fZQoaAZoCWgPQwhE+YIWEvAGwJSGlFKUaBVLMmgWR0CmTwJMQEpzdX2UKGgGaAloD0MImfG20mtz/7+UhpRSlGgVSzJoFkdApk6vBrN4aHV9lChoBmgJaA9DCMrFGFjH8QjAlIaUUpRoFUsyaBZHQKZOW/xDst11fZQoaAZoCWgPQwh8J2a9GCoHwJSGlFKUaBVLMmgWR0CmUDHL7oB8dX2UKGgGaAloD0MIi21S0VjbC8CUhpRSlGgVSzJoFkdApk/f7Hhjv3V9lChoBmgJaA9DCHLe/8cJkwTAlIaUUpRoFUsyaBZHQKZPjNJvo/11fZQoaAZoCWgPQwjaxp+obPgHwJSGlFKUaBVLMmgWR0CmTznbh3qzdX2UKGgGaAloD0MIE2BY/nwb/7+UhpRSlGgVSzJoFkdAplEMB4lhPXV9lChoBmgJaA9DCJHxKJXwBAbAlIaUUpRoFUsyaBZHQKZQugxrSE11fZQoaAZoCWgPQwisqpffafIJwJSGlFKUaBVLMmgWR0CmUGa4c3l0dX2UKGgGaAloD0MIzO1e7pNDDcCUhpRSlGgVSzJoFkdAplATnPmganV9lChoBmgJaA9DCHSzP1BuewjAlIaUUpRoFUsyaBZHQKZR7HZK3/h1fZQoaAZoCWgPQwgg09o0tmcbwJSGlFKUaBVLMmgWR0CmUZqJMxoJdX2UKGgGaAloD0MIuk4jLZVXEsCUhpRSlGgVSzJoFkdAplFHNC7btnV9lChoBmgJaA9DCCZvgJnvgAzAlIaUUpRoFUsyaBZHQKZQ9BjWkJt1fZQoaAZoCWgPQwjrxOV4BcIAwJSGlFKUaBVLMmgWR0CmUs5PuXu3dX2UKGgGaAloD0MIa2PshJfgA8CUhpRSlGgVSzJoFkdAplJ8aXKKYXV9lChoBmgJaA9DCPPoRlhUhATAlIaUUpRoFUsyaBZHQKZSKQdS2ph1fZQoaAZoCWgPQwiRKR+CqnEZwJSGlFKUaBVLMmgWR0CmUdXrD63zdX2UKGgGaAloD0MIpS4Zx0gWFMCUhpRSlGgVSzJoFkdAplOmw1R+B3V9lChoBmgJaA9DCL+aAwRz9BjAlIaUUpRoFUsyaBZHQKZTVL/S6Ud1fZQoaAZoCWgPQwineFxUi8gGwJSGlFKUaBVLMmgWR0CmUwGRFI/adX2UKGgGaAloD0MI5Eo9C0L5/7+UhpRSlGgVSzJoFkdAplKuiN83M3V9lChoBmgJaA9DCO7of7kWrRLAlIaUUpRoFUsyaBZHQKZUgxt52Qp1fZQoaAZoCWgPQwjCobd4eM8IwJSGlFKUaBVLMmgWR0CmVDEZaV2SdX2UKGgGaAloD0MI29yYnrAkCMCUhpRSlGgVSzJoFkdAplPd2A5Jb3V9lChoBmgJaA9DCMbgYdo3BxDAlIaUUpRoFUsyaBZHQKZTiuJ1q351ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcbf6de6280>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fcbf6de7640>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1681342002637070389,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhhXDPnkYWL11exU/hhXDPnkYWL11exU/hhXDPnkYWL11exU/hhXDPnkYWL11exU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAes+/v8vRVD+dYaq+Bu7HPkgpsD7Gvb6/L8rSP3Fbsz2FXJy/v7OsPi6G67wUiIy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGFcM+eRhYvXV7FT/SH867kHrIuomhAryGFcM+eRhYvXV7FT/SH867kHrIuomhAryGFcM+eRhYvXV7FT/SH867kHrIuomhAryGFcM+eRhYvXV7FT/SH867kHrIuomhAryUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.3810236 -0.05275771 0.58391505]\n [ 0.3810236 -0.05275771 0.58391505]\n [ 0.3810236 -0.05275771 0.58391505]\n [ 0.3810236 -0.05275771 0.58391505]]",
38
+ "desired_goal": "[[-1.4985192 0.8313262 -0.33277598]\n [ 0.39048785 0.34406495 -1.4901664 ]\n [ 1.6467952 0.08757675 -1.2215735 ]\n [ 0.33730885 -0.02875051 -1.0979028 ]]",
39
+ "observation": "[[ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]\n [ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]\n [ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]\n [ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0+xvvNPOED0/e10+TiMHPvhGzz201jU+r4GMvX4b0733/ag94SwTvgw+Bb5t6uI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.01464387 0.03535349 0.21629046]\n [ 0.13197061 0.10120958 0.17757684]\n [-0.06860673 -0.10307978 0.08251565]\n [-0.14372589 -0.1301195 0.11079869]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+8AT1q4CcCUhpRSlIwBbJRLMowBdJRHQKjgSoHcDbJ1fZQoaAZoCWgPQwhCeLRxxEoQwJSGlFKUaBVLMmgWR0Co3xUGmk30dX2UKGgGaAloD0MIiq92FOfoDsCUhpRSlGgVSzJoFkdAqN6yyY5T63V9lChoBmgJaA9DCGwE4nX9AhLAlIaUUpRoFUsyaBZHQKjeTEofCAN1fZQoaAZoCWgPQwjec2A5QiYNwJSGlFKUaBVLMmgWR0Co4TpW3jMndX2UKGgGaAloD0MIXmbYKOtHEMCUhpRSlGgVSzJoFkdAqOAE7p3X7XV9lChoBmgJaA9DCGBZaVIKmhXAlIaUUpRoFUsyaBZHQKjfoqhlDnh1fZQoaAZoCWgPQwj0UUZcANoEwJSGlFKUaBVLMmgWR0Co3zw/X5FgdX2UKGgGaAloD0MIJbA5B8/EC8CUhpRSlGgVSzJoFkdAqOIhVXFLnXV9lChoBmgJaA9DCBlz1xLyQQLAlIaUUpRoFUsyaBZHQKjg6+t8uz11fZQoaAZoCWgPQwihLedSXNUJwJSGlFKUaBVLMmgWR0Co4IpOerdWdX2UKGgGaAloD0MIYB3HD5V2FMCUhpRSlGgVSzJoFkdAqOAmp4rz5HV9lChoBmgJaA9DCFqBIatb3QvAlIaUUpRoFUsyaBZHQKjjCNCJGfB1fZQoaAZoCWgPQwhMNbOWAtIKwJSGlFKUaBVLMmgWR0Co4dO7xusLdX2UKGgGaAloD0MIw4AlV7HYD8CUhpRSlGgVSzJoFkdAqOFxgG8mKXV9lChoBmgJaA9DCGngRzXs1wPAlIaUUpRoFUsyaBZHQKjhC5Gz8gp1fZQoaAZoCWgPQwhzLsVVZR8KwJSGlFKUaBVLMmgWR0Co4+vQWvbHdX2UKGgGaAloD0MI/iyWIvlqAMCUhpRSlGgVSzJoFkdAqOK2aScLB3V9lChoBmgJaA9DCJ1Hxf8dUQPAlIaUUpRoFUsyaBZHQKjiVEhq0t11fZQoaAZoCWgPQwi4dMx5xj4GwJSGlFKUaBVLMmgWR0Co4e3Ux20RdX2UKGgGaAloD0MI12mkpfJWCMCUhpRSlGgVSzJoFkdAqOTZ1LamGnV9lChoBmgJaA9DCHLEWnwK4AnAlIaUUpRoFUsyaBZHQKjjpJL/S6V1fZQoaAZoCWgPQwgUtMnhk84KwJSGlFKUaBVLMmgWR0Co40LTYukDdX2UKGgGaAloD0MIKULqdva1EsCUhpRSlGgVSzJoFkdAqOLcjeKsMnV9lChoBmgJaA9DCMbf9gSJTQjAlIaUUpRoFUsyaBZHQKjlxC/oJRh1fZQoaAZoCWgPQwhGQfD49u4VwJSGlFKUaBVLMmgWR0Co5I6vzOHGdX2UKGgGaAloD0MIBwySPq3iDMCUhpRSlGgVSzJoFkdAqOQspkPMCHV9lChoBmgJaA9DCCwN/KiG/QnAlIaUUpRoFUsyaBZHQKjjxm7rcCZ1fZQoaAZoCWgPQwgcJhqk4IkOwJSGlFKUaBVLMmgWR0Co5qkrf+CLdX2UKGgGaAloD0MIzHwHP3HABcCUhpRSlGgVSzJoFkdAqOVz/6wdKnV9lChoBmgJaA9DCNv8v+rIcQHAlIaUUpRoFUsyaBZHQKjlEg13t8h1fZQoaAZoCWgPQwiesS/ZeHAOwJSGlFKUaBVLMmgWR0Co5KuXu3MIdX2UKGgGaAloD0MIzlFHx9WIAMCUhpRSlGgVSzJoFkdAqOeXmV7hN3V9lChoBmgJaA9DCHE5XoHoiQXAlIaUUpRoFUsyaBZHQKjmYigTRIB1fZQoaAZoCWgPQwjTZpyGqMIQwJSGlFKUaBVLMmgWR0Co5f/qxC6ZdX2UKGgGaAloD0MIkX9mEB/4C8CUhpRSlGgVSzJoFkdAqOWZaxHG0nV9lChoBmgJaA9DCPRQ24ZR0AnAlIaUUpRoFUsyaBZHQKjpFenAIpp1fZQoaAZoCWgPQwjU1ohgHMwSwJSGlFKUaBVLMmgWR0Co5+GBOHnEdX2UKGgGaAloD0MINJ4I4jwcBMCUhpRSlGgVSzJoFkdAqOd/1QIldHV9lChoBmgJaA9DCI55HXHIpg3AlIaUUpRoFUsyaBZHQKjnGfqX4TN1fZQoaAZoCWgPQwhBLnHkgagGwJSGlFKUaBVLMmgWR0Co6pF3Y+SsdX2UKGgGaAloD0MIM6X1twQABsCUhpRSlGgVSzJoFkdAqOlcqJ/G2nV9lChoBmgJaA9DCHOCNjl88g7AlIaUUpRoFUsyaBZHQKjo+yP+4sp1fZQoaAZoCWgPQwhMx5xn7OsFwJSGlFKUaBVLMmgWR0Co6JVFpfx+dX2UKGgGaAloD0MI0/nwLEEGC8CUhpRSlGgVSzJoFkdAqOwV5MURF3V9lChoBmgJaA9DCGWmtP6WQAfAlIaUUpRoFUsyaBZHQKjq4RHPNV11fZQoaAZoCWgPQwjeHRmrzT8JwJSGlFKUaBVLMmgWR0Co6oDKPn0TdX2UKGgGaAloD0MIy52ZYDj3BcCUhpRSlGgVSzJoFkdAqOoa+L3sX3V9lChoBmgJaA9DCEz9vKlIZRHAlIaUUpRoFUsyaBZHQKjtohqTKT11fZQoaAZoCWgPQwjDDfj8MFIQwJSGlFKUaBVLMmgWR0Co7G2HLzPKdX2UKGgGaAloD0MIzm3CvTJvE8CUhpRSlGgVSzJoFkdAqOwMBIWgvnV9lChoBmgJaA9DCBLb3QN0Hw3AlIaUUpRoFUsyaBZHQKjrpjHXEqF1fZQoaAZoCWgPQwgsRIfAkWAHwJSGlFKUaBVLMmgWR0Co7yK+BYmtdX2UKGgGaAloD0MIVMVU+gnHCMCUhpRSlGgVSzJoFkdAqO3uvt+kQHV9lChoBmgJaA9DCBzTE5Z4IA3AlIaUUpRoFUsyaBZHQKjtjQjUuth1fZQoaAZoCWgPQwgZ48PsZXsHwJSGlFKUaBVLMmgWR0Co7Scw5/9YdX2UKGgGaAloD0MI++k/a37cA8CUhpRSlGgVSzJoFkdAqPCtSde6Z3V9lChoBmgJaA9DCKphvyfW6QjAlIaUUpRoFUsyaBZHQKjveJZW7vp1fZQoaAZoCWgPQwheTZ6ymi4UwJSGlFKUaBVLMmgWR0Co7xeenQ6ZdX2UKGgGaAloD0MIg04IHXTJBcCUhpRSlGgVSzJoFkdAqO6yEFnqV3V9lChoBmgJaA9DCOLLRBFStwnAlIaUUpRoFUsyaBZHQKjyRSOzY291fZQoaAZoCWgPQwgyWkdVE8QJwJSGlFKUaBVLMmgWR0Co8RBN/OMVdX2UKGgGaAloD0MI+Q/pt69zEMCUhpRSlGgVSzJoFkdAqPCvduYQa3V9lChoBmgJaA9DCDkn9tA+9gDAlIaUUpRoFUsyaBZHQKjwScLBsRB1fZQoaAZoCWgPQwjurx73rbYHwJSGlFKUaBVLMmgWR0Co88PQOWjXdX2UKGgGaAloD0MISwD+KVWiCMCUhpRSlGgVSzJoFkdAqPKO8wpOOHV9lChoBmgJaA9DCErOiT20vxLAlIaUUpRoFUsyaBZHQKjyLP0qYqp1fZQoaAZoCWgPQwiXyAVn8DcBwJSGlFKUaBVLMmgWR0Co8ccGTs6adX2UKGgGaAloD0MIHF97ZklgC8CUhpRSlGgVSzJoFkdAqPSwG2TgVHV9lChoBmgJaA9DCETecvVj8wrAlIaUUpRoFUsyaBZHQKjzesTWXkZ1fZQoaAZoCWgPQwiYpZ2ay00OwJSGlFKUaBVLMmgWR0Co8xjLr5ZbdX2UKGgGaAloD0MIdc3km23OA8CUhpRSlGgVSzJoFkdAqPKyS7oStnV9lChoBmgJaA9DCIgNFk7SXBfAlIaUUpRoFUsyaBZHQKj1m8Gs3hp1fZQoaAZoCWgPQwhu3jgpzBsOwJSGlFKUaBVLMmgWR0Co9GZLqUu+dX2UKGgGaAloD0MIvAfovpypEMCUhpRSlGgVSzJoFkdAqPQEDjin53V9lChoBmgJaA9DCOdwrfawlwTAlIaUUpRoFUsyaBZHQKjznaxoqTd1fZQoaAZoCWgPQwiCqtGrASoMwJSGlFKUaBVLMmgWR0Co9pUYTCcgdX2UKGgGaAloD0MIsmMjEK+LCcCUhpRSlGgVSzJoFkdAqPVfw/gR9XV9lChoBmgJaA9DCJgUH5+QjRTAlIaUUpRoFUsyaBZHQKj0/eFcpsp1fZQoaAZoCWgPQwhIT5FDxE38v5SGlFKUaBVLMmgWR0Co9Jd4eLeidX2UKGgGaAloD0MIPs40YftpB8CUhpRSlGgVSzJoFkdAqPd/o7muDHV9lChoBmgJaA9DCPOv5ZXrrf6/lIaUUpRoFUsyaBZHQKj2Sn1nM+x1fZQoaAZoCWgPQwgo1qnyPQMPwJSGlFKUaBVLMmgWR0Co9ehNEgGKdX2UKGgGaAloD0MIEQGHUKUGCMCUhpRSlGgVSzJoFkdAqPWB2W6bv3V9lChoBmgJaA9DCLIv2XiwRQvAlIaUUpRoFUsyaBZHQKj4bWattAN1fZQoaAZoCWgPQwgLz0vFxvz+v5SGlFKUaBVLMmgWR0Co9zftIClrdX2UKGgGaAloD0MIr7FLVG/NA8CUhpRSlGgVSzJoFkdAqPbVoakylHV9lChoBmgJaA9DCJQyqaENgAfAlIaUUpRoFUsyaBZHQKj2b4B3iaR1fZQoaAZoCWgPQwjOUNzxJp8HwJSGlFKUaBVLMmgWR0Co+VRb8m8edX2UKGgGaAloD0MITb9EvHX+/r+UhpRSlGgVSzJoFkdAqPgfLDAJs3V9lChoBmgJaA9DCFgepKfIwQnAlIaUUpRoFUsyaBZHQKj3vOfukUN1fZQoaAZoCWgPQwiN1eb/VWcEwJSGlFKUaBVLMmgWR0Co91ZkbxVidX2UKGgGaAloD0MIIZOMnIV9/L+UhpRSlGgVSzJoFkdAqPo9hAnlXHV9lChoBmgJaA9DCJlH/mDgeQLAlIaUUpRoFUsyaBZHQKj5CDe0ojR1fZQoaAZoCWgPQwiD+pY5XXYGwJSGlFKUaBVLMmgWR0Co+KYIrvsrdX2UKGgGaAloD0MIwFsgQfFjA8CUhpRSlGgVSzJoFkdAqPg/h60IC3V9lChoBmgJaA9DCBwJNNjUKRPAlIaUUpRoFUsyaBZHQKj7J1kDp1R1fZQoaAZoCWgPQwhRTN4AM58AwJSGlFKUaBVLMmgWR0Co+fHy3CsPdX2UKGgGaAloD0MIhzHp76WQCcCUhpRSlGgVSzJoFkdAqPmPra/RFHV9lChoBmgJaA9DCBMOvcXDmwrAlIaUUpRoFUsyaBZHQKj5KTfR/mV1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1355afd1037d68aafb516c1ff65a644505d9998cf6b2ed92c2117e977172e6f7
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aabbc019ad2b645460f39cb563514e94fd81eea3c27b6f7880edf636ea5ed02
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4d53453d227e541c4eef9481689f37053115fcef69bb16f41376633ac5e98ccc
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdbb91dc1c3e91aad225b06667370de0452eef9c6d71cdb1c1acbb2f6d739e78
3
+ size 45886
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@
2
  - Python: 3.9.16
3
  - Stable-Baselines3: 1.8.0
4
  - PyTorch: 2.0.0+cu118
5
- - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
2
  - Python: 3.9.16
3
  - Stable-Baselines3: 1.8.0
4
  - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: False
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0dae498160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0dae496e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681334466923703674, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAEV7ZPigCZrzY+Qo/EV7ZPigCZrzY+Qo/EV7ZPigCZrzY+Qo/EV7ZPigCZrzY+Qo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALNC/vwclE78nq9W/7XiBP2CQGj7DB2M/cwyAP72miz+kDU8+2XWov+ClwL6Ov04/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAARXtk+KAJmvNj5Cj/M8505oJLPOT8/2zkRXtk+KAJmvNj5Cj/M8505oJLPOT8/2zkRXtk+KAJmvNj5Cj/M8505oJLPOT8/2zkRXtk+KAJmvNj5Cj/M8505oJLPOT8/2zmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4245458 -0.0140386 0.5428748]\n [ 0.4245458 -0.0140386 0.5428748]\n [ 0.4245458 -0.0140386 0.5428748]\n [ 0.4245458 -0.0140386 0.5428748]]", "desired_goal": "[[-1.4985404 -0.57478374 -1.6692857 ]\n [ 1.0115029 0.15094137 0.8868372 ]\n [ 1.0003799 1.091026 0.20220047]\n [-1.3160964 -0.37626553 0.8076104 ]]", "observation": "[[ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]\n [ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]\n [ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]\n [ 4.2454579e-01 -1.4038600e-02 5.4287481e-01 3.0127016e-04\n 3.9591361e-04 4.1818057e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6LbDvTrNFr4IdiY+JlIDPsVcmj3f0YI9k2QCPXRawTxv0jc9+XEzPc0lnzvzJJU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09556371 -0.14726725 0.16255963]\n [ 0.12824306 0.07537226 0.06387686]\n [ 0.0318342 0.0236027 0.04487842]\n [ 0.04380986 0.0048568 0.29129753]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILscrED2pCsCUhpRSlIwBbJRLMowBdJRHQKY8X2B8QZp1fZQoaAZoCWgPQwg0Z33KMVkMwJSGlFKUaBVLMmgWR0CmPA1lGwzMdX2UKGgGaAloD0MIWfePhehQCsCUhpRSlGgVSzJoFkdApju6EFnqV3V9lChoBmgJaA9DCJ4mM95WegLAlIaUUpRoFUsyaBZHQKY7ZwSamXR1fZQoaAZoCWgPQwgSSl8IOc8VwJSGlFKUaBVLMmgWR0CmPTTjFQ2udX2UKGgGaAloD0MICfoLPWK0CsCUhpRSlGgVSzJoFkdApjzi4FzMinV9lChoBmgJaA9DCNlaXyS0RQnAlIaUUpRoFUsyaBZHQKY8j5XU6Pt1fZQoaAZoCWgPQwiF7/0N2isHwJSGlFKUaBVLMmgWR0CmPDyOaOPvdX2UKGgGaAloD0MIHNDSFWwDDcCUhpRSlGgVSzJoFkdApj4U+JP69HV9lChoBmgJaA9DCMCy0qQU9ATAlIaUUpRoFUsyaBZHQKY9w12JSBN1fZQoaAZoCWgPQwgaTpmbbwQGwJSGlFKUaBVLMmgWR0CmPXAOz6acdX2UKGgGaAloD0MIBHRfzmx3CMCUhpRSlGgVSzJoFkdApj0dCb+cY3V9lChoBmgJaA9DCE0VjErqlBPAlIaUUpRoFUsyaBZHQKY+7e67NB51fZQoaAZoCWgPQwjBpzl5kakJwJSGlFKUaBVLMmgWR0CmPpvva11GdX2UKGgGaAloD0MIxcVRuYkKEMCUhpRSlGgVSzJoFkdApj5Iood+5XV9lChoBmgJaA9DCFe0Oc5tAhDAlIaUUpRoFUsyaBZHQKY99Y9Pk7x1fZQoaAZoCWgPQwgd6KG2DWP+v5SGlFKUaBVLMmgWR0CmP8bO3UhFdX2UKGgGaAloD0MIl43O+SluFMCUhpRSlGgVSzJoFkdApj904JeE7HV9lChoBmgJaA9DCPeTMT7MHgvAlIaUUpRoFUsyaBZHQKY/IZCv5gx1fZQoaAZoCWgPQwhh/3Vu2owKwJSGlFKUaBVLMmgWR0CmPs6Ei+tbdX2UKGgGaAloD0MIDFhyFYvfC8CUhpRSlGgVSzJoFkdApkCiya/h2nV9lChoBmgJaA9DCO2A64oZoRjAlIaUUpRoFUsyaBZHQKZAUMHbAUN1fZQoaAZoCWgPQwiU2/Y96i8MwJSGlFKUaBVLMmgWR0CmP/10tAcDdX2UKGgGaAloD0MIijxJumZSDcCUhpRSlGgVSzJoFkdApj+qagElmnV9lChoBmgJaA9DCHlXPWAeshfAlIaUUpRoFUsyaBZHQKZBe/rSmZV1fZQoaAZoCWgPQwjncRjMXwEQwJSGlFKUaBVLMmgWR0CmQSoW56MSdX2UKGgGaAloD0MIq3XicrxCG8CUhpRSlGgVSzJoFkdApkDWwosqa3V9lChoBmgJaA9DCJWbqKW5FQfAlIaUUpRoFUsyaBZHQKZAg6z3RHB1fZQoaAZoCWgPQwiEg72JIakbwJSGlFKUaBVLMmgWR0CmQlU6gdwOdX2UKGgGaAloD0MIl+Kqsu/qDMCUhpRSlGgVSzJoFkdApkIDPGACn3V9lChoBmgJaA9DCLlQ+dfyChDAlIaUUpRoFUsyaBZHQKZBr/EwWWR1fZQoaAZoCWgPQwinJVZGI18RwJSGlFKUaBVLMmgWR0CmQV0Cih38dX2UKGgGaAloD0MIIF9CBYeXDsCUhpRSlGgVSzJoFkdApkMxHG0eEXV9lChoBmgJaA9DCOmbNA2KxgfAlIaUUpRoFUsyaBZHQKZC34/NZ/11fZQoaAZoCWgPQwiC5QgZyHMKwJSGlFKUaBVLMmgWR0CmQow9ic5KdX2UKGgGaAloD0MI/FOqRNk7BcCUhpRSlGgVSzJoFkdApkI5ZW7vonV9lChoBmgJaA9DCB/ylqsfOxLAlIaUUpRoFUsyaBZHQKZEDh2nsLR1fZQoaAZoCWgPQwhnSBXFqzwSwJSGlFKUaBVLMmgWR0CmQ7wdjoZAdX2UKGgGaAloD0MIUI2XbhJDDcCUhpRSlGgVSzJoFkdApkNo5HVf/nV9lChoBmgJaA9DCG9JDtjVxBLAlIaUUpRoFUsyaBZHQKZDFekYXO51fZQoaAZoCWgPQwifru5YbJMawJSGlFKUaBVLMmgWR0CmROh9b5dodX2UKGgGaAloD0MIB+3Vx0N/D8CUhpRSlGgVSzJoFkdApkSXCGetjnV9lChoBmgJaA9DCL6iW6/pgQXAlIaUUpRoFUsyaBZHQKZERO6/Zdx1fZQoaAZoCWgPQwgLthFPdhMRwJSGlFKUaBVLMmgWR0CmQ/JGvwEydX2UKGgGaAloD0MI7fSDukihBMCUhpRSlGgVSzJoFkdApkXGq1gH/3V9lChoBmgJaA9DCFBz8iITeCDAlIaUUpRoFUsyaBZHQKZFdLAYYSB1fZQoaAZoCWgPQwjSbYlccAYJwJSGlFKUaBVLMmgWR0CmRSF0HQhPdX2UKGgGaAloD0MItafknNgjBMCUhpRSlGgVSzJoFkdApkTOa4MF2XV9lChoBmgJaA9DCETBjClYwwvAlIaUUpRoFUsyaBZHQKZG9RUm2LJ1fZQoaAZoCWgPQwhbW3heKhYQwJSGlFKUaBVLMmgWR0CmRqOF6AvtdX2UKGgGaAloD0MIpztPPGeLCcCUhpRSlGgVSzJoFkdApkZQs7MgU3V9lChoBmgJaA9DCA3BcRk3RRbAlIaUUpRoFUsyaBZHQKZF/lFMIu51fZQoaAZoCWgPQwjCa5c2HDYMwJSGlFKUaBVLMmgWR0CmSEahpQDWdX2UKGgGaAloD0MIvw0xXvPKDMCUhpRSlGgVSzJoFkdApkf1J17pmnV9lChoBmgJaA9DCCrJOhxdBRDAlIaUUpRoFUsyaBZHQKZHop4rz5J1fZQoaAZoCWgPQwiWI2Qgz44KwJSGlFKUaBVLMmgWR0CmR1AlfJFLdX2UKGgGaAloD0MIXHSy1Hq/DcCUhpRSlGgVSzJoFkdApknJfF72MHV9lChoBmgJaA9DCBpPBHEeDg/AlIaUUpRoFUsyaBZHQKZJeGZ/kNp1fZQoaAZoCWgPQwhLkBFQ4agBwJSGlFKUaBVLMmgWR0CmSSXTd+G5dX2UKGgGaAloD0MIdlJflnb6EMCUhpRSlGgVSzJoFkdApkjT28IzFnV9lChoBmgJaA9DCESn591YQBHAlIaUUpRoFUsyaBZHQKZLW67ulXR1fZQoaAZoCWgPQwjV6xaBsV4GwJSGlFKUaBVLMmgWR0CmSwpQtSQ6dX2UKGgGaAloD0MIG/LPDOJDEMCUhpRSlGgVSzJoFkdApkq3mPo3aXV9lChoBmgJaA9DCLqkarsJ7hHAlIaUUpRoFUsyaBZHQKZKZSKm8/V1fZQoaAZoCWgPQwjEJ51IMEURwJSGlFKUaBVLMmgWR0CmTNE4WDYidX2UKGgGaAloD0MIBtfc0f+SBMCUhpRSlGgVSzJoFkdApkx/zreImHV9lChoBmgJaA9DCH8UdeYeMgTAlIaUUpRoFUsyaBZHQKZMLRtP5591fZQoaAZoCWgPQwgNjLysiYUMwJSGlFKUaBVLMmgWR0CmS9qrzXjEdX2UKGgGaAloD0MIsTOFzmtMCMCUhpRSlGgVSzJoFkdApk5B8neBQXV9lChoBmgJaA9DCFN1j2yuqhDAlIaUUpRoFUsyaBZHQKZN8JUHY6J1fZQoaAZoCWgPQwiyuP/IdHgRwJSGlFKUaBVLMmgWR0CmTZ433pOfdX2UKGgGaAloD0MIe8GnOXlBEcCUhpRSlGgVSzJoFkdApk1LuQZGa3V9lChoBmgJaA9DCDOjHw2nTAfAlIaUUpRoFUsyaBZHQKZPVFQVKwp1fZQoaAZoCWgPQwhE+YIWEvAGwJSGlFKUaBVLMmgWR0CmTwJMQEpzdX2UKGgGaAloD0MImfG20mtz/7+UhpRSlGgVSzJoFkdApk6vBrN4aHV9lChoBmgJaA9DCMrFGFjH8QjAlIaUUpRoFUsyaBZHQKZOW/xDst11fZQoaAZoCWgPQwh8J2a9GCoHwJSGlFKUaBVLMmgWR0CmUDHL7oB8dX2UKGgGaAloD0MIi21S0VjbC8CUhpRSlGgVSzJoFkdApk/f7Hhjv3V9lChoBmgJaA9DCHLe/8cJkwTAlIaUUpRoFUsyaBZHQKZPjNJvo/11fZQoaAZoCWgPQwjaxp+obPgHwJSGlFKUaBVLMmgWR0CmTznbh3qzdX2UKGgGaAloD0MIE2BY/nwb/7+UhpRSlGgVSzJoFkdAplEMB4lhPXV9lChoBmgJaA9DCJHxKJXwBAbAlIaUUpRoFUsyaBZHQKZQugxrSE11fZQoaAZoCWgPQwisqpffafIJwJSGlFKUaBVLMmgWR0CmUGa4c3l0dX2UKGgGaAloD0MIzO1e7pNDDcCUhpRSlGgVSzJoFkdAplATnPmganV9lChoBmgJaA9DCHSzP1BuewjAlIaUUpRoFUsyaBZHQKZR7HZK3/h1fZQoaAZoCWgPQwgg09o0tmcbwJSGlFKUaBVLMmgWR0CmUZqJMxoJdX2UKGgGaAloD0MIuk4jLZVXEsCUhpRSlGgVSzJoFkdAplFHNC7btnV9lChoBmgJaA9DCCZvgJnvgAzAlIaUUpRoFUsyaBZHQKZQ9BjWkJt1fZQoaAZoCWgPQwjrxOV4BcIAwJSGlFKUaBVLMmgWR0CmUs5PuXu3dX2UKGgGaAloD0MIa2PshJfgA8CUhpRSlGgVSzJoFkdAplJ8aXKKYXV9lChoBmgJaA9DCPPoRlhUhATAlIaUUpRoFUsyaBZHQKZSKQdS2ph1fZQoaAZoCWgPQwiRKR+CqnEZwJSGlFKUaBVLMmgWR0CmUdXrD63zdX2UKGgGaAloD0MIpS4Zx0gWFMCUhpRSlGgVSzJoFkdAplOmw1R+B3V9lChoBmgJaA9DCL+aAwRz9BjAlIaUUpRoFUsyaBZHQKZTVL/S6Ud1fZQoaAZoCWgPQwineFxUi8gGwJSGlFKUaBVLMmgWR0CmUwGRFI/adX2UKGgGaAloD0MI5Eo9C0L5/7+UhpRSlGgVSzJoFkdAplKuiN83M3V9lChoBmgJaA9DCO7of7kWrRLAlIaUUpRoFUsyaBZHQKZUgxt52Qp1fZQoaAZoCWgPQwjCobd4eM8IwJSGlFKUaBVLMmgWR0CmVDEZaV2SdX2UKGgGaAloD0MI29yYnrAkCMCUhpRSlGgVSzJoFkdAplPd2A5Jb3V9lChoBmgJaA9DCMbgYdo3BxDAlIaUUpRoFUsyaBZHQKZTiuJ1q351ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcbf6de6280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcbf6de7640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681342002637070389, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhhXDPnkYWL11exU/hhXDPnkYWL11exU/hhXDPnkYWL11exU/hhXDPnkYWL11exU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAes+/v8vRVD+dYaq+Bu7HPkgpsD7Gvb6/L8rSP3Fbsz2FXJy/v7OsPi6G67wUiIy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGFcM+eRhYvXV7FT/SH867kHrIuomhAryGFcM+eRhYvXV7FT/SH867kHrIuomhAryGFcM+eRhYvXV7FT/SH867kHrIuomhAryGFcM+eRhYvXV7FT/SH867kHrIuomhAryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3810236 -0.05275771 0.58391505]\n [ 0.3810236 -0.05275771 0.58391505]\n [ 0.3810236 -0.05275771 0.58391505]\n [ 0.3810236 -0.05275771 0.58391505]]", "desired_goal": "[[-1.4985192 0.8313262 -0.33277598]\n [ 0.39048785 0.34406495 -1.4901664 ]\n [ 1.6467952 0.08757675 -1.2215735 ]\n [ 0.33730885 -0.02875051 -1.0979028 ]]", "observation": "[[ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]\n [ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]\n [ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]\n [ 0.3810236 -0.05275771 0.58391505 -0.00629041 -0.00152953 -0.00797308]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0+xvvNPOED0/e10+TiMHPvhGzz201jU+r4GMvX4b0733/ag94SwTvgw+Bb5t6uI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01464387 0.03535349 0.21629046]\n [ 0.13197061 0.10120958 0.17757684]\n [-0.06860673 -0.10307978 0.08251565]\n [-0.14372589 -0.1301195 0.11079869]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+8AT1q4CcCUhpRSlIwBbJRLMowBdJRHQKjgSoHcDbJ1fZQoaAZoCWgPQwhCeLRxxEoQwJSGlFKUaBVLMmgWR0Co3xUGmk30dX2UKGgGaAloD0MIiq92FOfoDsCUhpRSlGgVSzJoFkdAqN6yyY5T63V9lChoBmgJaA9DCGwE4nX9AhLAlIaUUpRoFUsyaBZHQKjeTEofCAN1fZQoaAZoCWgPQwjec2A5QiYNwJSGlFKUaBVLMmgWR0Co4TpW3jMndX2UKGgGaAloD0MIXmbYKOtHEMCUhpRSlGgVSzJoFkdAqOAE7p3X7XV9lChoBmgJaA9DCGBZaVIKmhXAlIaUUpRoFUsyaBZHQKjfoqhlDnh1fZQoaAZoCWgPQwj0UUZcANoEwJSGlFKUaBVLMmgWR0Co3zw/X5FgdX2UKGgGaAloD0MIJbA5B8/EC8CUhpRSlGgVSzJoFkdAqOIhVXFLnXV9lChoBmgJaA9DCBlz1xLyQQLAlIaUUpRoFUsyaBZHQKjg6+t8uz11fZQoaAZoCWgPQwihLedSXNUJwJSGlFKUaBVLMmgWR0Co4IpOerdWdX2UKGgGaAloD0MIYB3HD5V2FMCUhpRSlGgVSzJoFkdAqOAmp4rz5HV9lChoBmgJaA9DCFqBIatb3QvAlIaUUpRoFUsyaBZHQKjjCNCJGfB1fZQoaAZoCWgPQwhMNbOWAtIKwJSGlFKUaBVLMmgWR0Co4dO7xusLdX2UKGgGaAloD0MIw4AlV7HYD8CUhpRSlGgVSzJoFkdAqOFxgG8mKXV9lChoBmgJaA9DCGngRzXs1wPAlIaUUpRoFUsyaBZHQKjhC5Gz8gp1fZQoaAZoCWgPQwhzLsVVZR8KwJSGlFKUaBVLMmgWR0Co4+vQWvbHdX2UKGgGaAloD0MI/iyWIvlqAMCUhpRSlGgVSzJoFkdAqOK2aScLB3V9lChoBmgJaA9DCJ1Hxf8dUQPAlIaUUpRoFUsyaBZHQKjiVEhq0t11fZQoaAZoCWgPQwi4dMx5xj4GwJSGlFKUaBVLMmgWR0Co4e3Ux20RdX2UKGgGaAloD0MI12mkpfJWCMCUhpRSlGgVSzJoFkdAqOTZ1LamGnV9lChoBmgJaA9DCHLEWnwK4AnAlIaUUpRoFUsyaBZHQKjjpJL/S6V1fZQoaAZoCWgPQwgUtMnhk84KwJSGlFKUaBVLMmgWR0Co40LTYukDdX2UKGgGaAloD0MIKULqdva1EsCUhpRSlGgVSzJoFkdAqOLcjeKsMnV9lChoBmgJaA9DCMbf9gSJTQjAlIaUUpRoFUsyaBZHQKjlxC/oJRh1fZQoaAZoCWgPQwhGQfD49u4VwJSGlFKUaBVLMmgWR0Co5I6vzOHGdX2UKGgGaAloD0MIBwySPq3iDMCUhpRSlGgVSzJoFkdAqOQspkPMCHV9lChoBmgJaA9DCCwN/KiG/QnAlIaUUpRoFUsyaBZHQKjjxm7rcCZ1fZQoaAZoCWgPQwgcJhqk4IkOwJSGlFKUaBVLMmgWR0Co5qkrf+CLdX2UKGgGaAloD0MIzHwHP3HABcCUhpRSlGgVSzJoFkdAqOVz/6wdKnV9lChoBmgJaA9DCNv8v+rIcQHAlIaUUpRoFUsyaBZHQKjlEg13t8h1fZQoaAZoCWgPQwiesS/ZeHAOwJSGlFKUaBVLMmgWR0Co5KuXu3MIdX2UKGgGaAloD0MIzlFHx9WIAMCUhpRSlGgVSzJoFkdAqOeXmV7hN3V9lChoBmgJaA9DCHE5XoHoiQXAlIaUUpRoFUsyaBZHQKjmYigTRIB1fZQoaAZoCWgPQwjTZpyGqMIQwJSGlFKUaBVLMmgWR0Co5f/qxC6ZdX2UKGgGaAloD0MIkX9mEB/4C8CUhpRSlGgVSzJoFkdAqOWZaxHG0nV9lChoBmgJaA9DCPRQ24ZR0AnAlIaUUpRoFUsyaBZHQKjpFenAIpp1fZQoaAZoCWgPQwjU1ohgHMwSwJSGlFKUaBVLMmgWR0Co5+GBOHnEdX2UKGgGaAloD0MINJ4I4jwcBMCUhpRSlGgVSzJoFkdAqOd/1QIldHV9lChoBmgJaA9DCI55HXHIpg3AlIaUUpRoFUsyaBZHQKjnGfqX4TN1fZQoaAZoCWgPQwhBLnHkgagGwJSGlFKUaBVLMmgWR0Co6pF3Y+SsdX2UKGgGaAloD0MIM6X1twQABsCUhpRSlGgVSzJoFkdAqOlcqJ/G2nV9lChoBmgJaA9DCHOCNjl88g7AlIaUUpRoFUsyaBZHQKjo+yP+4sp1fZQoaAZoCWgPQwhMx5xn7OsFwJSGlFKUaBVLMmgWR0Co6JVFpfx+dX2UKGgGaAloD0MI0/nwLEEGC8CUhpRSlGgVSzJoFkdAqOwV5MURF3V9lChoBmgJaA9DCGWmtP6WQAfAlIaUUpRoFUsyaBZHQKjq4RHPNV11fZQoaAZoCWgPQwjeHRmrzT8JwJSGlFKUaBVLMmgWR0Co6oDKPn0TdX2UKGgGaAloD0MIy52ZYDj3BcCUhpRSlGgVSzJoFkdAqOoa+L3sX3V9lChoBmgJaA9DCEz9vKlIZRHAlIaUUpRoFUsyaBZHQKjtohqTKT11fZQoaAZoCWgPQwjDDfj8MFIQwJSGlFKUaBVLMmgWR0Co7G2HLzPKdX2UKGgGaAloD0MIzm3CvTJvE8CUhpRSlGgVSzJoFkdAqOwMBIWgvnV9lChoBmgJaA9DCBLb3QN0Hw3AlIaUUpRoFUsyaBZHQKjrpjHXEqF1fZQoaAZoCWgPQwgsRIfAkWAHwJSGlFKUaBVLMmgWR0Co7yK+BYmtdX2UKGgGaAloD0MIVMVU+gnHCMCUhpRSlGgVSzJoFkdAqO3uvt+kQHV9lChoBmgJaA9DCBzTE5Z4IA3AlIaUUpRoFUsyaBZHQKjtjQjUuth1fZQoaAZoCWgPQwgZ48PsZXsHwJSGlFKUaBVLMmgWR0Co7Scw5/9YdX2UKGgGaAloD0MI++k/a37cA8CUhpRSlGgVSzJoFkdAqPCtSde6Z3V9lChoBmgJaA9DCKphvyfW6QjAlIaUUpRoFUsyaBZHQKjveJZW7vp1fZQoaAZoCWgPQwheTZ6ymi4UwJSGlFKUaBVLMmgWR0Co7xeenQ6ZdX2UKGgGaAloD0MIg04IHXTJBcCUhpRSlGgVSzJoFkdAqO6yEFnqV3V9lChoBmgJaA9DCOLLRBFStwnAlIaUUpRoFUsyaBZHQKjyRSOzY291fZQoaAZoCWgPQwgyWkdVE8QJwJSGlFKUaBVLMmgWR0Co8RBN/OMVdX2UKGgGaAloD0MI+Q/pt69zEMCUhpRSlGgVSzJoFkdAqPCvduYQa3V9lChoBmgJaA9DCDkn9tA+9gDAlIaUUpRoFUsyaBZHQKjwScLBsRB1fZQoaAZoCWgPQwjurx73rbYHwJSGlFKUaBVLMmgWR0Co88PQOWjXdX2UKGgGaAloD0MISwD+KVWiCMCUhpRSlGgVSzJoFkdAqPKO8wpOOHV9lChoBmgJaA9DCErOiT20vxLAlIaUUpRoFUsyaBZHQKjyLP0qYqp1fZQoaAZoCWgPQwiXyAVn8DcBwJSGlFKUaBVLMmgWR0Co8ccGTs6adX2UKGgGaAloD0MIHF97ZklgC8CUhpRSlGgVSzJoFkdAqPSwG2TgVHV9lChoBmgJaA9DCETecvVj8wrAlIaUUpRoFUsyaBZHQKjzesTWXkZ1fZQoaAZoCWgPQwiYpZ2ay00OwJSGlFKUaBVLMmgWR0Co8xjLr5ZbdX2UKGgGaAloD0MIdc3km23OA8CUhpRSlGgVSzJoFkdAqPKyS7oStnV9lChoBmgJaA9DCIgNFk7SXBfAlIaUUpRoFUsyaBZHQKj1m8Gs3hp1fZQoaAZoCWgPQwhu3jgpzBsOwJSGlFKUaBVLMmgWR0Co9GZLqUu+dX2UKGgGaAloD0MIvAfovpypEMCUhpRSlGgVSzJoFkdAqPQEDjin53V9lChoBmgJaA9DCOdwrfawlwTAlIaUUpRoFUsyaBZHQKjznaxoqTd1fZQoaAZoCWgPQwiCqtGrASoMwJSGlFKUaBVLMmgWR0Co9pUYTCcgdX2UKGgGaAloD0MIsmMjEK+LCcCUhpRSlGgVSzJoFkdAqPVfw/gR9XV9lChoBmgJaA9DCJgUH5+QjRTAlIaUUpRoFUsyaBZHQKj0/eFcpsp1fZQoaAZoCWgPQwhIT5FDxE38v5SGlFKUaBVLMmgWR0Co9Jd4eLeidX2UKGgGaAloD0MIPs40YftpB8CUhpRSlGgVSzJoFkdAqPd/o7muDHV9lChoBmgJaA9DCPOv5ZXrrf6/lIaUUpRoFUsyaBZHQKj2Sn1nM+x1fZQoaAZoCWgPQwgo1qnyPQMPwJSGlFKUaBVLMmgWR0Co9ehNEgGKdX2UKGgGaAloD0MIEQGHUKUGCMCUhpRSlGgVSzJoFkdAqPWB2W6bv3V9lChoBmgJaA9DCLIv2XiwRQvAlIaUUpRoFUsyaBZHQKj4bWattAN1fZQoaAZoCWgPQwgLz0vFxvz+v5SGlFKUaBVLMmgWR0Co9zftIClrdX2UKGgGaAloD0MIr7FLVG/NA8CUhpRSlGgVSzJoFkdAqPbVoakylHV9lChoBmgJaA9DCJQyqaENgAfAlIaUUpRoFUsyaBZHQKj2b4B3iaR1fZQoaAZoCWgPQwjOUNzxJp8HwJSGlFKUaBVLMmgWR0Co+VRb8m8edX2UKGgGaAloD0MITb9EvHX+/r+UhpRSlGgVSzJoFkdAqPgfLDAJs3V9lChoBmgJaA9DCFgepKfIwQnAlIaUUpRoFUsyaBZHQKj3vOfukUN1fZQoaAZoCWgPQwiN1eb/VWcEwJSGlFKUaBVLMmgWR0Co91ZkbxVidX2UKGgGaAloD0MIIZOMnIV9/L+UhpRSlGgVSzJoFkdAqPo9hAnlXHV9lChoBmgJaA9DCJlH/mDgeQLAlIaUUpRoFUsyaBZHQKj5CDe0ojR1fZQoaAZoCWgPQwiD+pY5XXYGwJSGlFKUaBVLMmgWR0Co+KYIrvsrdX2UKGgGaAloD0MIwFsgQfFjA8CUhpRSlGgVSzJoFkdAqPg/h60IC3V9lChoBmgJaA9DCBwJNNjUKRPAlIaUUpRoFUsyaBZHQKj7J1kDp1R1fZQoaAZoCWgPQwhRTN4AM58AwJSGlFKUaBVLMmgWR0Co+fHy3CsPdX2UKGgGaAloD0MIhzHp76WQCcCUhpRSlGgVSzJoFkdAqPmPra/RFHV9lChoBmgJaA9DCBMOvcXDmwrAlIaUUpRoFUsyaBZHQKj5KTfR/mV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.059155591484159, "std_reward": 0.6578141678966092, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T22:12:35.759900"}
 
1
+ {"mean_reward": -2.6065058861859143, "std_reward": 0.6689729927301439, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T00:20:54.625893"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14b393d063bf0759e6ff25bfceac93f9905c57e5b40031f3c51757415647c237
3
  size 2381
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ab2a05e275e8af30a09ee164150796183f8d7f8797f5b425d953afdb194b249
3
  size 2381