TRiddle commited on
Commit
aedee38
·
1 Parent(s): 948d552

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 246.24 +/- 22.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5e9883f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5e9888040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5e98880d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5e9888160>", "_build": "<function ActorCriticPolicy._build at 0x7fb5e98881f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb5e9888280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb5e9888310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5e98883a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb5e9888430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5e98884c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5e9888550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5e98885e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb5e98809c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677170251173633354, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB8hzxdTps+Xmf4vD4kVr6lcHW83rnOPQAAAAAAAAAATXQhvfaQSLrG/Li76p66Nk+daTviSC22AACAPwAAgD+NUF0+7J4qPyETgb6GHAO+2MoQvf4lyb0AAAAAAAAAAB4JqL6EhLc+GCf2PaZMmr6wx429OQSuvAAAAAAAAAAAzQXrvFwrYrpGul25F/NytEHkp7qNOYI4AACAPwAAgD9NwSA+q24eP9Y40r2ZsgO+RC+9vGBkk70AAAAAAAAAAPM4PT50Urw+sDJqvhphIr6lWSq9JziWvQAAAAAAAAAAZkj6vFyDNLoQolg7AKw+tRaimTqHbIC6AACAPwAAgD9mGDs8w9FjuglUMTu869yz2XiYO7wfTLoAAIA/AACAP7OcC70fZYm5bLUDPFnEYTYSZCY7Ix1VNQAAgD8AAIA/AAGwvOFUh7qB04+300aispNXqzn8uqc2AACAPwAAgD9N/h+99lQYurxqJboh0fA12MjEumhLRTkAAIA/AACAP00+AD0Ktwu5tHynOqRFrTWaog07vMDMuQAAgD8AAIA/zXzUPI9aW7ry72e67V49tZS0CLtSTYg5AACAPwAAgD/N9VM9w2l0uvGkBDr6BPk0CkxKuvJYG7kAAIA/AACAP4AyET1I64+6vq7It1wGwrIyfrs6evToNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUADFyJJ/ZkCUhpRSlIwBbJRN6AOMAXSUR0CV5YhAWznidX2UKGgGaAloD0MI8fW1LrVGY0CUhpRSlGgVTegDaBZHQJXnmBg/keZ1fZQoaAZoCWgPQwinkgGgCj1hQJSGlFKUaBVN6ANoFkdAlfBiiVSn+HV9lChoBmgJaA9DCEDZlCs8h2VAlIaUUpRoFU3oA2gWR0CV+iKFZgXudX2UKGgGaAloD0MIW1t4XqoHZ0CUhpRSlGgVTegDaBZHQJX6Je9i+cp1fZQoaAZoCWgPQwiflEkNbelhQJSGlFKUaBVN6ANoFkdAlf7lBQemvXV9lChoBmgJaA9DCLRXHw/942BAlIaUUpRoFU3oA2gWR0CWAcFXaJyidX2UKGgGaAloD0MI3gIJip+DY0CUhpRSlGgVTegDaBZHQJYEbdLxqfx1fZQoaAZoCWgPQwiDTZ1HRUhjQJSGlFKUaBVN6ANoFkdAlgUnQdCE6HV9lChoBmgJaA9DCFqg3SFFi2VAlIaUUpRoFU3oA2gWR0CWB3pqASWadX2UKGgGaAloD0MIvwtbs5XRYUCUhpRSlGgVTegDaBZHQJYJl2nsLOR1fZQoaAZoCWgPQwhJMNXMWvdiQJSGlFKUaBVN6ANoFkdAlgw1vl2eQXV9lChoBmgJaA9DCDMyyF2E2V5AlIaUUpRoFU3oA2gWR0CWEm8vmHQAdX2UKGgGaAloD0MI+YctPZqyZECUhpRSlGgVTegDaBZHQJYTksSTQmh1fZQoaAZoCWgPQwjg929enCNgQJSGlFKUaBVN6ANoFkdAliS2CEpRXXV9lChoBmgJaA9DCJCGU+Zm02RAlIaUUpRoFU3oA2gWR0CWJlpRXOnmdX2UKGgGaAloD0MInWhXIeUaY0CUhpRSlGgVTegDaBZHQJYo3FyaNMp1fZQoaAZoCWgPQwjBH37+eydmQJSGlFKUaBVN6ANoFkdAlj1qyv9tM3V9lChoBmgJaA9DCDW3QliN1WFAlIaUUpRoFU3oA2gWR0CWRVThYNiIdX2UKGgGaAloD0MI1lbsLztsY0CUhpRSlGgVTegDaBZHQJZR5httQ9B1fZQoaAZoCWgPQwj7eVORCg1nQJSGlFKUaBVN6ANoFkdAllHrYPGyX3V9lChoBmgJaA9DCBTLLa0GQGNAlIaUUpRoFU3oA2gWR0CWWI2M85jpdX2UKGgGaAloD0MITMYxkj3XWkCUhpRSlGgVTegDaBZHQJZcLWQOnVJ1fZQoaAZoCWgPQwigppat9Y9cQJSGlFKUaBVN6ANoFkdAll8NNFjNIXV9lChoBmgJaA9DCN7M6EfDlVxAlIaUUpRoFU3oA2gWR0CWX9EroW56dX2UKGgGaAloD0MIoRNCB92PZECUhpRSlGgVTegDaBZHQJZiW0Xxe9l1fZQoaAZoCWgPQwjCTxxAvxtjQJSGlFKUaBVN6ANoFkdAlmSrc9GI9HV9lChoBmgJaA9DCM11Gmmp8VpAlIaUUpRoFU3oA2gWR0CWZ6ScslLOdX2UKGgGaAloD0MIKxcq/9qRZECUhpRSlGgVTegDaBZHQJZs+By0a611fZQoaAZoCWgPQwggfv57cK5iQJSGlFKUaBVN6ANoFkdAlm3z1oQFtHV9lChoBmgJaA9DCOEp5Eq9T2JAlIaUUpRoFU3oA2gWR0CWfImYjSogdX2UKGgGaAloD0MIob/QI8btY0CUhpRSlGgVTegDaBZHQJZ+PCoCMgl1fZQoaAZoCWgPQwiCWDZzyIFlQJSGlFKUaBVN6ANoFkdAloDGHHmzSnV9lChoBmgJaA9DCLvRx3zA5GVAlIaUUpRoFU3oA2gWR0CWgpW5H3DfdX2UKGgGaAloD0MIKzOl9bcmYUCUhpRSlGgVTegDaBZHQJaiZEuxrzp1fZQoaAZoCWgPQwiKyLCKN0ovQJSGlFKUaBVNEwFoFkdAlqWbdi2Dx3V9lChoBmgJaA9DCJ1kq8sp3mVAlIaUUpRoFU3oA2gWR0CWq2BPKuB+dX2UKGgGaAloD0MIQDTz5BonYkCUhpRSlGgVTegDaBZHQJarY2BJ7LN1fZQoaAZoCWgPQwj5u3fUGCBjQJSGlFKUaBVN6ANoFkdAlq/mZRbbDnV9lChoBmgJaA9DCHgmNEksc2JAlIaUUpRoFU3oA2gWR0CWsmWOIZZTdX2UKGgGaAloD0MIQ8cOKnGnX0CUhpRSlGgVTegDaBZHQJa05fF72L51fZQoaAZoCWgPQwiVKeYg6BljQJSGlFKUaBVN6ANoFkdAlrWNOuaF23V9lChoBmgJaA9DCN/A5EaR9mFAlIaUUpRoFU3oA2gWR0CWt/evpyIYdX2UKGgGaAloD0MIIxYx7DAVY0CUhpRSlGgVTegDaBZHQJa6GJvYODt1fZQoaAZoCWgPQwgudvussk9iQJSGlFKUaBVN6ANoFkdAlrzHmV7hN3V9lChoBmgJaA9DCLmNBvCWLmRAlIaUUpRoFU3oA2gWR0CWw6VUMoc8dX2UKGgGaAloD0MIsB73rdY7YkCUhpRSlGgVTegDaBZHQJbE9opQUHp1fZQoaAZoCWgPQwiFfNCzWSlKQJSGlFKUaBVL+mgWR0CW2M3gk1MudX2UKGgGaAloD0MIT3gJTn1sYkCUhpRSlGgVTegDaBZHQJbZ+jua4MF1fZQoaAZoCWgPQwg4nzpWqdZiQJSGlFKUaBVN6ANoFkdAltyo33pOe3V9lChoBmgJaA9DCJ7TLNDuvlxAlIaUUpRoFU3oA2gWR0CW3qpSaVlgdX2UKGgGaAloD0MI0bGDSlw/ZECUhpRSlGgVTegDaBZHQJb6ADbJwKl1fZQoaAZoCWgPQwg4vCAiNb1kQJSGlFKUaBVN6ANoFkdAlv6CG8EmpnV9lChoBmgJaA9DCDcclgZ+I2RAlIaUUpRoFU3oA2gWR0CXBjWU8mrsdX2UKGgGaAloD0MINrBVgkUbY0CUhpRSlGgVTegDaBZHQJcGO46Oo5x1fZQoaAZoCWgPQwhuTbotkWJjQJSGlFKUaBVN6ANoFkdAlwwPfO2RaHV9lChoBmgJaA9DCOYCl8ca1mJAlIaUUpRoFU3oA2gWR0CXDq+eOGTLdX2UKGgGaAloD0MI0QK0reauYECUhpRSlGgVTegDaBZHQJcRDoyKvV51fZQoaAZoCWgPQwh1H4DUJiVgQJSGlFKUaBVN6ANoFkdAlxG7tVrAQHV9lChoBmgJaA9DCOrL0k5NcWVAlIaUUpRoFU3oA2gWR0CXE+oGpuMudX2UKGgGaAloD0MINLvurchXYkCUhpRSlGgVTegDaBZHQJcV6ecx0uF1fZQoaAZoCWgPQwjhzoWRXsphQJSGlFKUaBVN6ANoFkdAlxh2/nGKh3V9lChoBmgJaA9DCDkM5q+Q4mJAlIaUUpRoFU3oA2gWR0CXHhUKiO/+dX2UKGgGaAloD0MInN8w0SAIZUCUhpRSlGgVTegDaBZHQJctqJemelN1fZQoaAZoCWgPQwiumueI/IhkQJSGlFKUaBVN6ANoFkdAly7JG8VYZHV9lChoBmgJaA9DCESoUrNHOnBAlIaUUpRoFU2/A2gWR0CXMH9kSVW0dX2UKGgGaAloD0MIKjqSy39OX0CUhpRSlGgVTegDaBZHQJcxIuRLbpN1fZQoaAZoCWgPQwjxLawb71VdQJSGlFKUaBVN6ANoFkdAl1JkbtJFs3V9lChoBmgJaA9DCK9DNSXZa2BAlIaUUpRoFU3oA2gWR0CXVWmCyyD7dX2UKGgGaAloD0MIpTFaR1WbYkCUhpRSlGgVTegDaBZHQJdanCtRvWJ1fZQoaAZoCWgPQwgXY2AdR09jQJSGlFKUaBVN6ANoFkdAl1qfIjnmrHV9lChoBmgJaA9DCJPGaB3VD2BAlIaUUpRoFU3oA2gWR0CXXqyp71IzdX2UKGgGaAloD0MIWG/UClOpZUCUhpRSlGgVTegDaBZHQJdhHjghr311fZQoaAZoCWgPQwjymeyfp/9fQJSGlFKUaBVN6ANoFkdAl2OzC1qnFnV9lChoBmgJaA9DCH14liAjWGNAlIaUUpRoFU3oA2gWR0CXZGDFId2gdX2UKGgGaAloD0MIjQsHQjKmYUCUhpRSlGgVTegDaBZHQJdmuOwPiDN1fZQoaAZoCWgPQwi0VUlkn0dkQJSGlFKUaBVN6ANoFkdAl2jerMkhR3V9lChoBmgJaA9DCFNdwMsM3WBAlIaUUpRoFU3oA2gWR0CXa4Ed/8VIdX2UKGgGaAloD0MI88r1thmIYkCUhpRSlGgVTegDaBZHQJdynGdZq211fZQoaAZoCWgPQwgCoIobN+JjQJSGlFKUaBVN6ANoFkdAl4fsNhE0BXV9lChoBmgJaA9DCK5H4XqU9WVAlIaUUpRoFU3oA2gWR0CXiSf1pTMrdX2UKGgGaAloD0MIP3RBfUsHcUCUhpRSlGgVTQgCaBZHQJeKq5MDfWN1fZQoaAZoCWgPQwi4zr9ddjBjQJSGlFKUaBVN6ANoFkdAl4sSKziS73V9lChoBmgJaA9DCNi8qrNawWNAlIaUUpRoFU3oA2gWR0CXi8kUKzAvdX2UKGgGaAloD0MIQGt+/CUeZkCUhpRSlGgVTegDaBZHQJeoCN1hb4d1fZQoaAZoCWgPQwhY42w6gvBkQJSGlFKUaBVN6ANoFkdAl6ubQw9JSXV9lChoBmgJaA9DCBXikXh53WNAlIaUUpRoFU3oA2gWR0CXs3mois4ldX2UKGgGaAloD0MIuwuUFNjkZUCUhpRSlGgVTegDaBZHQJezgFcIJJJ1fZQoaAZoCWgPQwgBMnTsoJFgQJSGlFKUaBVN6ANoFkdAl7mI/iYLLXV9lChoBmgJaA9DCMdkcf8Rp2VAlIaUUpRoFU3oA2gWR0CXvRt1ZDArdX2UKGgGaAloD0MIAHMtWoCFYkCUhpRSlGgVTegDaBZHQJfAxqj8DSx1fZQoaAZoCWgPQwj8OQX52ZtiQJSGlFKUaBVN6ANoFkdAl8MqdQO4G3V9lChoBmgJaA9DCKp/EMkQ/GVAlIaUUpRoFU3oA2gWR0CXxUXQdCE6dX2UKGgGaAloD0MIQni0cUTXZUCUhpRSlGgVTegDaBZHQJfH9NnGsFN1fZQoaAZoCWgPQwhNTBdidR1nQJSGlFKUaBVN6ANoFkdAl83bbtZ3cHV9lChoBmgJaA9DCF5lbVO8eWRAlIaUUpRoFU3oA2gWR0CX3hMgU1yedX2UKGgGaAloD0MIqmOV0rN8ZECUhpRSlGgVTegDaBZHQJffSqKgqVh1fZQoaAZoCWgPQwisAyDuaiNiQJSGlFKUaBVN6ANoFkdAl+DrLZBcA3V9lChoBmgJaA9DCIy5awl51GRAlIaUUpRoFU3oA2gWR0CX4ViD/VAidX2UKGgGaAloD0MIbF1qhP7cYkCUhpRSlGgVTegDaBZHQJfiDwx33Yd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b06516be6d7b6b3574cb427f1ecb59238bd5c72a52a349aef6031cd0e97f5069
3
+ size 147424
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5e9883f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5e9888040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5e98880d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5e9888160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb5e98881f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb5e9888280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb5e9888310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5e98883a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb5e9888430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5e98884c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5e9888550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5e98885e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb5e98809c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677170251173633354,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB8hzxdTps+Xmf4vD4kVr6lcHW83rnOPQAAAAAAAAAATXQhvfaQSLrG/Li76p66Nk+daTviSC22AACAPwAAgD+NUF0+7J4qPyETgb6GHAO+2MoQvf4lyb0AAAAAAAAAAB4JqL6EhLc+GCf2PaZMmr6wx429OQSuvAAAAAAAAAAAzQXrvFwrYrpGul25F/NytEHkp7qNOYI4AACAPwAAgD9NwSA+q24eP9Y40r2ZsgO+RC+9vGBkk70AAAAAAAAAAPM4PT50Urw+sDJqvhphIr6lWSq9JziWvQAAAAAAAAAAZkj6vFyDNLoQolg7AKw+tRaimTqHbIC6AACAPwAAgD9mGDs8w9FjuglUMTu869yz2XiYO7wfTLoAAIA/AACAP7OcC70fZYm5bLUDPFnEYTYSZCY7Ix1VNQAAgD8AAIA/AAGwvOFUh7qB04+300aispNXqzn8uqc2AACAPwAAgD9N/h+99lQYurxqJboh0fA12MjEumhLRTkAAIA/AACAP00+AD0Ktwu5tHynOqRFrTWaog07vMDMuQAAgD8AAIA/zXzUPI9aW7ry72e67V49tZS0CLtSTYg5AACAPwAAgD/N9VM9w2l0uvGkBDr6BPk0CkxKuvJYG7kAAIA/AACAP4AyET1I64+6vq7It1wGwrIyfrs6evToNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUADFyJJ/ZkCUhpRSlIwBbJRN6AOMAXSUR0CV5YhAWznidX2UKGgGaAloD0MI8fW1LrVGY0CUhpRSlGgVTegDaBZHQJXnmBg/keZ1fZQoaAZoCWgPQwinkgGgCj1hQJSGlFKUaBVN6ANoFkdAlfBiiVSn+HV9lChoBmgJaA9DCEDZlCs8h2VAlIaUUpRoFU3oA2gWR0CV+iKFZgXudX2UKGgGaAloD0MIW1t4XqoHZ0CUhpRSlGgVTegDaBZHQJX6Je9i+cp1fZQoaAZoCWgPQwiflEkNbelhQJSGlFKUaBVN6ANoFkdAlf7lBQemvXV9lChoBmgJaA9DCLRXHw/942BAlIaUUpRoFU3oA2gWR0CWAcFXaJyidX2UKGgGaAloD0MI3gIJip+DY0CUhpRSlGgVTegDaBZHQJYEbdLxqfx1fZQoaAZoCWgPQwiDTZ1HRUhjQJSGlFKUaBVN6ANoFkdAlgUnQdCE6HV9lChoBmgJaA9DCFqg3SFFi2VAlIaUUpRoFU3oA2gWR0CWB3pqASWadX2UKGgGaAloD0MIvwtbs5XRYUCUhpRSlGgVTegDaBZHQJYJl2nsLOR1fZQoaAZoCWgPQwhJMNXMWvdiQJSGlFKUaBVN6ANoFkdAlgw1vl2eQXV9lChoBmgJaA9DCDMyyF2E2V5AlIaUUpRoFU3oA2gWR0CWEm8vmHQAdX2UKGgGaAloD0MI+YctPZqyZECUhpRSlGgVTegDaBZHQJYTksSTQmh1fZQoaAZoCWgPQwjg929enCNgQJSGlFKUaBVN6ANoFkdAliS2CEpRXXV9lChoBmgJaA9DCJCGU+Zm02RAlIaUUpRoFU3oA2gWR0CWJlpRXOnmdX2UKGgGaAloD0MInWhXIeUaY0CUhpRSlGgVTegDaBZHQJYo3FyaNMp1fZQoaAZoCWgPQwjBH37+eydmQJSGlFKUaBVN6ANoFkdAlj1qyv9tM3V9lChoBmgJaA9DCDW3QliN1WFAlIaUUpRoFU3oA2gWR0CWRVThYNiIdX2UKGgGaAloD0MI1lbsLztsY0CUhpRSlGgVTegDaBZHQJZR5httQ9B1fZQoaAZoCWgPQwj7eVORCg1nQJSGlFKUaBVN6ANoFkdAllHrYPGyX3V9lChoBmgJaA9DCBTLLa0GQGNAlIaUUpRoFU3oA2gWR0CWWI2M85jpdX2UKGgGaAloD0MITMYxkj3XWkCUhpRSlGgVTegDaBZHQJZcLWQOnVJ1fZQoaAZoCWgPQwigppat9Y9cQJSGlFKUaBVN6ANoFkdAll8NNFjNIXV9lChoBmgJaA9DCN7M6EfDlVxAlIaUUpRoFU3oA2gWR0CWX9EroW56dX2UKGgGaAloD0MIoRNCB92PZECUhpRSlGgVTegDaBZHQJZiW0Xxe9l1fZQoaAZoCWgPQwjCTxxAvxtjQJSGlFKUaBVN6ANoFkdAlmSrc9GI9HV9lChoBmgJaA9DCM11Gmmp8VpAlIaUUpRoFU3oA2gWR0CWZ6ScslLOdX2UKGgGaAloD0MIKxcq/9qRZECUhpRSlGgVTegDaBZHQJZs+By0a611fZQoaAZoCWgPQwggfv57cK5iQJSGlFKUaBVN6ANoFkdAlm3z1oQFtHV9lChoBmgJaA9DCOEp5Eq9T2JAlIaUUpRoFU3oA2gWR0CWfImYjSogdX2UKGgGaAloD0MIob/QI8btY0CUhpRSlGgVTegDaBZHQJZ+PCoCMgl1fZQoaAZoCWgPQwiCWDZzyIFlQJSGlFKUaBVN6ANoFkdAloDGHHmzSnV9lChoBmgJaA9DCLvRx3zA5GVAlIaUUpRoFU3oA2gWR0CWgpW5H3DfdX2UKGgGaAloD0MIKzOl9bcmYUCUhpRSlGgVTegDaBZHQJaiZEuxrzp1fZQoaAZoCWgPQwiKyLCKN0ovQJSGlFKUaBVNEwFoFkdAlqWbdi2Dx3V9lChoBmgJaA9DCJ1kq8sp3mVAlIaUUpRoFU3oA2gWR0CWq2BPKuB+dX2UKGgGaAloD0MIQDTz5BonYkCUhpRSlGgVTegDaBZHQJarY2BJ7LN1fZQoaAZoCWgPQwj5u3fUGCBjQJSGlFKUaBVN6ANoFkdAlq/mZRbbDnV9lChoBmgJaA9DCHgmNEksc2JAlIaUUpRoFU3oA2gWR0CWsmWOIZZTdX2UKGgGaAloD0MIQ8cOKnGnX0CUhpRSlGgVTegDaBZHQJa05fF72L51fZQoaAZoCWgPQwiVKeYg6BljQJSGlFKUaBVN6ANoFkdAlrWNOuaF23V9lChoBmgJaA9DCN/A5EaR9mFAlIaUUpRoFU3oA2gWR0CWt/evpyIYdX2UKGgGaAloD0MIIxYx7DAVY0CUhpRSlGgVTegDaBZHQJa6GJvYODt1fZQoaAZoCWgPQwgudvussk9iQJSGlFKUaBVN6ANoFkdAlrzHmV7hN3V9lChoBmgJaA9DCLmNBvCWLmRAlIaUUpRoFU3oA2gWR0CWw6VUMoc8dX2UKGgGaAloD0MIsB73rdY7YkCUhpRSlGgVTegDaBZHQJbE9opQUHp1fZQoaAZoCWgPQwiFfNCzWSlKQJSGlFKUaBVL+mgWR0CW2M3gk1MudX2UKGgGaAloD0MIT3gJTn1sYkCUhpRSlGgVTegDaBZHQJbZ+jua4MF1fZQoaAZoCWgPQwg4nzpWqdZiQJSGlFKUaBVN6ANoFkdAltyo33pOe3V9lChoBmgJaA9DCJ7TLNDuvlxAlIaUUpRoFU3oA2gWR0CW3qpSaVlgdX2UKGgGaAloD0MI0bGDSlw/ZECUhpRSlGgVTegDaBZHQJb6ADbJwKl1fZQoaAZoCWgPQwg4vCAiNb1kQJSGlFKUaBVN6ANoFkdAlv6CG8EmpnV9lChoBmgJaA9DCDcclgZ+I2RAlIaUUpRoFU3oA2gWR0CXBjWU8mrsdX2UKGgGaAloD0MINrBVgkUbY0CUhpRSlGgVTegDaBZHQJcGO46Oo5x1fZQoaAZoCWgPQwhuTbotkWJjQJSGlFKUaBVN6ANoFkdAlwwPfO2RaHV9lChoBmgJaA9DCOYCl8ca1mJAlIaUUpRoFU3oA2gWR0CXDq+eOGTLdX2UKGgGaAloD0MI0QK0reauYECUhpRSlGgVTegDaBZHQJcRDoyKvV51fZQoaAZoCWgPQwh1H4DUJiVgQJSGlFKUaBVN6ANoFkdAlxG7tVrAQHV9lChoBmgJaA9DCOrL0k5NcWVAlIaUUpRoFU3oA2gWR0CXE+oGpuMudX2UKGgGaAloD0MINLvurchXYkCUhpRSlGgVTegDaBZHQJcV6ecx0uF1fZQoaAZoCWgPQwjhzoWRXsphQJSGlFKUaBVN6ANoFkdAlxh2/nGKh3V9lChoBmgJaA9DCDkM5q+Q4mJAlIaUUpRoFU3oA2gWR0CXHhUKiO/+dX2UKGgGaAloD0MInN8w0SAIZUCUhpRSlGgVTegDaBZHQJctqJemelN1fZQoaAZoCWgPQwiumueI/IhkQJSGlFKUaBVN6ANoFkdAly7JG8VYZHV9lChoBmgJaA9DCESoUrNHOnBAlIaUUpRoFU2/A2gWR0CXMH9kSVW0dX2UKGgGaAloD0MIKjqSy39OX0CUhpRSlGgVTegDaBZHQJcxIuRLbpN1fZQoaAZoCWgPQwjxLawb71VdQJSGlFKUaBVN6ANoFkdAl1JkbtJFs3V9lChoBmgJaA9DCK9DNSXZa2BAlIaUUpRoFU3oA2gWR0CXVWmCyyD7dX2UKGgGaAloD0MIpTFaR1WbYkCUhpRSlGgVTegDaBZHQJdanCtRvWJ1fZQoaAZoCWgPQwgXY2AdR09jQJSGlFKUaBVN6ANoFkdAl1qfIjnmrHV9lChoBmgJaA9DCJPGaB3VD2BAlIaUUpRoFU3oA2gWR0CXXqyp71IzdX2UKGgGaAloD0MIWG/UClOpZUCUhpRSlGgVTegDaBZHQJdhHjghr311fZQoaAZoCWgPQwjymeyfp/9fQJSGlFKUaBVN6ANoFkdAl2OzC1qnFnV9lChoBmgJaA9DCH14liAjWGNAlIaUUpRoFU3oA2gWR0CXZGDFId2gdX2UKGgGaAloD0MIjQsHQjKmYUCUhpRSlGgVTegDaBZHQJdmuOwPiDN1fZQoaAZoCWgPQwi0VUlkn0dkQJSGlFKUaBVN6ANoFkdAl2jerMkhR3V9lChoBmgJaA9DCFNdwMsM3WBAlIaUUpRoFU3oA2gWR0CXa4Ed/8VIdX2UKGgGaAloD0MI88r1thmIYkCUhpRSlGgVTegDaBZHQJdynGdZq211fZQoaAZoCWgPQwgCoIobN+JjQJSGlFKUaBVN6ANoFkdAl4fsNhE0BXV9lChoBmgJaA9DCK5H4XqU9WVAlIaUUpRoFU3oA2gWR0CXiSf1pTMrdX2UKGgGaAloD0MIP3RBfUsHcUCUhpRSlGgVTQgCaBZHQJeKq5MDfWN1fZQoaAZoCWgPQwi4zr9ddjBjQJSGlFKUaBVN6ANoFkdAl4sSKziS73V9lChoBmgJaA9DCNi8qrNawWNAlIaUUpRoFU3oA2gWR0CXi8kUKzAvdX2UKGgGaAloD0MIQGt+/CUeZkCUhpRSlGgVTegDaBZHQJeoCN1hb4d1fZQoaAZoCWgPQwhY42w6gvBkQJSGlFKUaBVN6ANoFkdAl6ubQw9JSXV9lChoBmgJaA9DCBXikXh53WNAlIaUUpRoFU3oA2gWR0CXs3mois4ldX2UKGgGaAloD0MIuwuUFNjkZUCUhpRSlGgVTegDaBZHQJezgFcIJJJ1fZQoaAZoCWgPQwgBMnTsoJFgQJSGlFKUaBVN6ANoFkdAl7mI/iYLLXV9lChoBmgJaA9DCMdkcf8Rp2VAlIaUUpRoFU3oA2gWR0CXvRt1ZDArdX2UKGgGaAloD0MIAHMtWoCFYkCUhpRSlGgVTegDaBZHQJfAxqj8DSx1fZQoaAZoCWgPQwj8OQX52ZtiQJSGlFKUaBVN6ANoFkdAl8MqdQO4G3V9lChoBmgJaA9DCKp/EMkQ/GVAlIaUUpRoFU3oA2gWR0CXxUXQdCE6dX2UKGgGaAloD0MIQni0cUTXZUCUhpRSlGgVTegDaBZHQJfH9NnGsFN1fZQoaAZoCWgPQwhNTBdidR1nQJSGlFKUaBVN6ANoFkdAl83bbtZ3cHV9lChoBmgJaA9DCF5lbVO8eWRAlIaUUpRoFU3oA2gWR0CX3hMgU1yedX2UKGgGaAloD0MIqmOV0rN8ZECUhpRSlGgVTegDaBZHQJffSqKgqVh1fZQoaAZoCWgPQwisAyDuaiNiQJSGlFKUaBVN6ANoFkdAl+DrLZBcA3V9lChoBmgJaA9DCIy5awl51GRAlIaUUpRoFU3oA2gWR0CX4ViD/VAidX2UKGgGaAloD0MIbF1qhP7cYkCUhpRSlGgVTegDaBZHQJfiDwx33Yd1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:534d760a0350394916a7c36a6ae9934878ea6c34f57f4e03eaa05ab509dece59
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04d554ab11016fe8f9c993f137de36cc65c92c2ca70447a672c4fa8a721fefd4
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (262 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 246.24345212614654, "std_reward": 22.927370914193297, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T17:09:49.666308"}