File size: 21,927 Bytes
c777980
4a71ce1
 
 
 
 
77c4531
4a71ce1
 
 
 
 
 
77c4531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c777980
e92fe7b
 
 
 
7796053
 
e92fe7b
 
 
ae5fda5
 
 
 
 
 
 
e92fe7b
 
 
7796053
e92fe7b
 
 
 
 
 
 
ae5fda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92fe7b
ae5fda5
e92fe7b
 
ae5fda5
e92fe7b
 
 
 
 
 
 
 
 
 
ae5fda5
e92fe7b
 
 
 
 
7796053
 
 
ae5fda5
e92fe7b
ae5fda5
e92fe7b
ae5fda5
e92fe7b
ae5fda5
 
 
e92fe7b
 
ae5fda5
 
 
 
 
 
 
 
 
e92fe7b
ae5fda5
 
 
 
 
 
 
 
 
e92fe7b
ae5fda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92fe7b
 
ae5fda5
 
e92fe7b
 
ae5fda5
e92fe7b
 
 
 
 
 
 
77c4531
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
---
language:
- en
- zh
- ru
- cs
license: mit
tags:
- text evaluation
- metric
- llm metric
- llama
- tigerscore
datasets:
- TIGER-Lab/MetricInstruct
metrics:
- pearsonr
- spearmanr
pipeline_tag: text2text-generation
model-index:
- name: TIGERScore-13B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.04
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TIGER-Lab/TIGERScore-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.79
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TIGER-Lab/TIGERScore-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 55.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TIGER-Lab/TIGERScore-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 40.38
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TIGER-Lab/TIGERScore-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 74.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TIGER-Lab/TIGERScore-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.73
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TIGER-Lab/TIGERScore-13B
      name: Open LLM Leaderboard
---


## TIGERScore

[Project Page](https://tiger-ai-lab.github.io/TIGERScore/) | [Paper](https://arxiv.org/abs/2310.00752) | [Code](https://github.com/TIGER-AI-Lab/TIGERScore) | [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/TIGERScore) | 
[🤗TIGERScore-7B](https://huggingface.co/TIGER-Lab/TIGERScore-7B-V1.2) | [🤗TIGERScore-13B](https://huggingface.co/TIGER-Lab/TIGERScore-13B-V1.2)

## Introduction

We present TIGERScore, a **T**rained metric that follows **I**nstruction **G**uidance to perform **E**xplainable, and **R**eference-free evaluation over a wide spectrum of text generation tasks. Our metric is based on LLaMA-2, trained on our meticulously curated instruction-tuning dataset [MetricInstruct](https://huggingface.co/datasets/TIGER-Lab/MetricInstruct) which covers 6 text generation tasks and 23 text generation datasets. 

Existing automatic metrics are lagging and suffer from issues like 1) **Dependency on references**, 2) **Limited to specific domains**, 3) **Lack of attribution**. Contrary to them, TIGERScore is designed to be driven by natural language instruction and provide detailed error analysis to pinpoint the mistakes in the generated text.

Specifically, TIGERScore takes an instruction, an associated input context along with a hypothesis output that might contain errors. Then, TIGERScore will evaluate this hypothesis output and list several errors, each consisting of the error location, aspect, explanation and penalty scores (score reduced, starting from 0). The sum of the reduced scores is taken as the overall rating of this output.

As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. We believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.

## Training Data

The models are trained on the 🤗 [MetricInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MetricInstruct), which covers 6 text generation tasks and 22 text generation datasets. Check out the dataset card for more details.

## Training Procedure

The models are fine-tuned with the MetricInstruct dataset using the original Llama-2 model as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details.

## Evaluation

Experiments show that TIGERScore surpasses existing baseline metrics in correlation with human ratings on all 6 held-in tasks and 1 held-out task, achiving the highest overall performance. We hope the emergence of TIGERScore can promote the research in the LLM community as a powerful, interpretable, and easy-to-use metric.

### Kendall Results
| Tasks⟶                                    | Summarization  | Translation    | Data2Text      | Long-form QA    | MathQA         | Instruction Following   | Story-Gen      | Average        |
|----------------------------------------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|
|                                        |           |           | GPT-based | Metrics        |           |           |           |           |
| GPT-3.5-turbo (few-shot)               | **30.45** | 32.3      | 30.38           | 20.91     | **58.57** | 17.73     | 3.26      | 27.65     |
| GPT-4 (zero-shot)                      | 29.32     | **35.38** | **32.26**       | **35.85** | 46.63     | **49.5**  | **25.69** | **36.38** |
|                                        |           |           | Reference-based | Metrics    |           |           |           |           |
| BLEU                                   | 8.71      | 14.5      | 23.13           | 7.73      | 17.25     | 35.92     | -0.89     | 15.19     |
| ROUGE-2f                               | 10.67     | 13.19     | 24.74           | 11.73     | 18.07     | 34.59     | 1.78      | 16.4      |
| InstructScore                          | 20.86     | 40.44     | 30.21           | 15.64     | -3.87     | 13.87     | 13.5      | 18.66     |
| GPTScore-ref                           | 10.8      | 18.74     | 27.47           | 22.13     | 14.86     | 25.4      | 12.78     | 18.88     |
| BARTScore-cnn (hypo-ref)               | 10        | 21.06     | 27.04           | 20.67     | **19.07** | 24.7      | 18.58     | 20.16     |
| BARTScore-para (hypo-ref)              | 10.41     | 24.9      | 28.42           | 20.24     | 14.1      | 26.13     | 12.11     | 19.47     |
| BERTScore                              | 17.39     | 31.57     | 30.74           | 17.7      | 9.41      | 35.61     | 2         | 20.63     |
| BLEURT                                 | 12.69     | 36.12     | **34.48**       | 23.11     | 2.88      | 27.94     | 19.18     | 22.34     |
| UniEval (summ)                         | **35.89** | 16.08     | 28.56           | **29.32** | 16.15     | 11.93     | **31.22** | 24.17     |
| COMET-22                               | 25.01     | **42.79** | 23.43           | 24.66     | -4.52     | **36.17** | 27.52     | **25.01** |
|                                        |           |           | Reference-free  |Metrics    |           |           |           |           |
| BARTScore-para (src-hypo)              | 29.12     | 7.01      | 22.32           | 18.8      | -2.21     | 4.26      | 14.15     | 13.35     |
| BARTScore-cnn (src-hypo)               | 26.63     | 9.4       | 23.69           | 28.93     | 1.23      | 19.09     | 23.29     | 18.89     |
| Llama-2-13b-chat-0-shot                | 25.22     | 11.79     | 23.45           | 15.96     | 1.08      | 19.5      | 21.52     | 16.93     |
| COMETKiwi                              | 11.87     | 36.37     | 19.08           | 12.23     | -9.38     | 26.46     | 12.78     | 15.63     |
| GPTScore-src                           | 28.2      | 6.5       | 19.81           | 27.64     | 11.64     | 20.04     | 16.36     | 18.6      |
| TigerScore-7B                          | 28.79     | 33.65     | 32.44           | 33.93     | 19.98     | 38.13     | 29.72     | 30.95     |
| TigerScore-13B                         | **31.29** | **36.5**  | **36.43**       | **33.17** | **21.58** | **41.84** | **35.33** | **33.73** |
| ∆ (ours - best reference-free)  | +2         | +0         | +13              | +4         | +10        | +15        | +14        | +15        |
| ∆ (ours - best reference-based) | -4        | -6        | +2               | +4         | +2         | +5         | +4         | +8         |

### Pearson Results

| Tasks⟶                                    | Summarization  | Translation    | Data2Text      | Long-form QA    | MathQA         | Instruction Following   | Story-Gen      | Average        |
|-------------------------------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|
|                               |           |           | GPT-based       | Metrics   |           |           |           |           |
| GPT-3.5-turbo (few-shot)      | **45.53** | **43.77** | **47.76**       | 29.84     | **61.26** | 15.36     | 7.8       | 35.9      |
| GPT-4 (zero-shot)             | 40.75     | 33.92     | 46.83           | **49.3**  | 54.98     | **60.45** | **37.74** | **46.28** |
|                               |           |           | Reference-based | Metrics   |           |           |           |           |
| BLEU                          | 11.66     | 17.47     | 34.29           | 18.21     | 18.12     | 29.47     | -0.64     | 18.37     |
| ROUGE-2f                      | 16.03     | 16.26     | 35.85           | 19.66     | 20.69     | 33.49     | 2.88      | 20.69     |
| InstructScore                 | 27.4      | 51.55     | 47.28           | 20.59     | 0.36      | 20.98     | 12.81     | 25.85     |
| GPTScore-ref                  | 13.47     | 21.05     | 48.7            | 33.4      | 18.22     | 29.66     | 18.94     | 26.2      |
| BARTScore-cnn (hypo-ref)      | 16.67     | 23.56     | 45.08           | 32.78     | **23.09** | 26.57     | 27.61     | 27.91     |
| BARTScore-para (hypo-ref)     | 19.73     | 29.04     | 47.89           | 32.7      | 17.33     | 30.2      | 17.76     | 27.81     |
| BERTScore                     | 26.26     | 37.65     | 48.22           | 26.39     | 11.19     | 45.58     | 4.08      | 28.48     |
| BLEURT                        | 17.27     | 43        | **54.32**       | 34.26     | 3.98      | 39.15     | 27.89     | 31.41     |
| UniEval (summ)                | **53.22** | 23.11     | 51.14           | **36.95** | 17.69     | 30.87     | **44.88** | 36.84     |
| COMET-22                      | 35.32     | **58.46** | 43.82           | 36.79     | -5.58     | **49.68** | 40.12     | **36.94** |
|                               |           |           | Reference-free  | Metrics   |           |           |           |           |
| BARTScore-para (src-hypo)     | 43.11     | 6.96      | 37.82           | 29.86     | -0.41     | 19.37     | 19.99     | 22.38     |
| BARTScore-cnn (src-hypo)      | 39.72     | 9.53      | 45.43           | 41.48     | 3.28      | 34.97     | 33.51     | 29.7      |
| Llama-2-13b-chat-0-shot       | 29.59     | 9.09      | 41.32           | 21.67     | 2.8       | 22.71     | 21.13     | 21.19     |
| COMETKiwi                     | 14.22     | **50.91** | 23.63           | 22.59     | -13.35    | 34.46     | 19.12     | 21.65     |
| GPTScore-src                  | 41.71     | 6.82      | 41.19           | 39.79     | 13.99     | 27.59     | 23.22     | 27.76     |
| TigerScore-7B                 | 43.95     | 37.7      | 49.13           | **46.1**  | 21.77     | 38.26     | 39.9      | 39.54     |
| TigerScore-13B                | **44.21** | 41.54     | **52.87**       | 44.76     | **24.41** | **47.52** | **47.66** | **43.28** |
| ∆ (ours - best reference-free)  | +1         | -9        | +7               | +5         | +10        | +20        | +14        | +13        |
| ∆ (ours - best reference-based) | -9        | -17       | -2              | +9         | +1         | -2        | +3         | +6         |

### Spearman Results

| Tasks⟶                                    | Summarization  | Translation    | Data2Text      | Long-form QA    | MathQA         | Instruction Following   | Story-Gen      | Average        |
|-------------------------------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|
|                               |           |           | GPT-based       | Metrics   |           |           |           |           |
| GPT-3.5-turbo (few-shot)                  | **38.50**      | 40.53          | 40.20          | 29.33           | **66.46**      | 23.20          | 4.77           | 34.71          |
| GPT-4 (zero-shot)                         | 36.46          | **43.87**      | **44.04**      | **48.95**       | 51.71          | **58.53**      | **32.48**      | **45.15**      |
|                               |           |           | Reference-based | Metrics   |           |           |           |           |
| BLEU                                      | 11.98          | 19.73          | 33.29          | 11.38           | 21.12          | **46.61**      | -1.17          | 20.42          |
| ROUGE-2f                                  | 14.53          | 17.83          | 35.49          | 16.83           | 22.12          | 44.56          | 2.34           | 21.96          |
| InstructScore                             | 26.33          | 47.30          | 43.93          | 21.62           | -4.15          | 16.19          | 16.13          | 23.91          |
| GPTScore-ref                              | 14.73          | 24.95          | 39.42          | 31.60           | 18.20          | 33.14          | 18.24          | 25.75          |
| BARTScore-cnn(hypo-ref)                   | 13.64          | 28.53          | 36.12          | 29.57           | **23.35**      | 32.49          | 26.64          | 27.19          |
| BARTScore-para (hypo-ref)                 | 17.18          | 33.72          | 40.79          | 28.94           | 17.27          | 34.47          | 17.43          | 27.11          |
| BERTScore                                 | 23.67          | 42.41          | 43.75          | 25.60           | 11.53          | 45.77          | 2.88           | 27.95          |
| BLEURT                                    | 17.30          | 48.41          | **48.76**      | 33.26           | 3.53           | 36.46          | 27.52          | 30.75          |
| UniEval(summ)                             | **47.52**      | 21.90          | 38.38          | **41.83**       | 19.78          | 16.02          | **44.46**      | 32.84          |
| COMET-22                                  | 33.75          | **56.35**      | 33.92          | 35.28           | -5.53          | 46.13          | 39.20          | **34.16**      |
|                               |           |           | Reference-free  | Metrics   |           |           |           |           |
| BARTScore-para (src-hypo)                 | **38.68**      | 9.60           | 32.26          | 26.86           | -2.70          | 5.92           | 20.55          | 18.74          |
| BARTScore-cnn (src-hypo)                  | 35.50          | 12.83          | 34.33          | 40.96           | 1.50           | 25.43          | 33.48          | 26.29          |
| Llama-2-13b-chat-0-shot                   | 28.53          | 14.38          | 29.24          | 19.91           | 1.08           | 21.37          | 26.78          | 20.18          |
| COMETKiwi                                 | 16.27          | **48.48**      | 27.90          | 18.05           | -11.48         | 34.86          | 18.47          | 21.79          |
| GPTScore-src                              | 37.41          | 8.90           | 28.82          | 39.48           | 14.25          | 26.46          | 23.91          | 25.61          |
| TIGERScore-7B (ours)                      | 35.11          | 41.50          | 42.39          | **47.11**       | 21.23          | 43.57          | 39.26          | 38.60          |
| TIGERScore-13B (ours)                     | 36.81          | 44.99          | **45.88**      | 46.22           | **23.32**      | **47.03**      | **46.36**      | **41.52**      |
| Δ (ours - best reference-free)            | -2             | -3             | +12            | +5              | +9             | +14            | +13            | +16            |
| ∆ (ours - best reference-based) | -9        | -11       | -3              | +5         | -0         | +0        | +2         | +7         |

## Usage

TIGERScore can be easily loaded in 2 lines of codes, and provides a friendly scoring interface function.

To use TIGERScore, first install `tigerscore` with 
```bash
pip install git+https://github.com/TIGER-AI-Lab/TIGERScore.git
```

Then load the tigerscore model variates according to you needs.
```python
# set up scorer
from tigerscore import TIGERScorer
scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-13B") # on GPU
# scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-13B", quantized=True) # 4 bit quantization on GPU
# scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-13B", use_vllm=True) # VLLM on GPU, Recommended for faster evaluation (0.2s per instance)
# scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-13B-GGUF", use_llamacpp=True) # 4 bit quantization on CPU
```

After loading, you can easily get errors of the provided **hypothesis output** given the **instruction** and **input context**
```python
# example  
instruction = "Write an apology letter."
input_context = "Reason: You canceled a plan at the last minute due to illness."
hypo_output = "Hey [Recipient],\n\nI'm really sorry for ditching our plan. I suddenly got an opportunity for a vacation so I took it. I know this might have messed up your plans and I regret that.\n\nDespite being under the weather, I would rather go for an adventure. I hope you can understand my perspective and I hope this incident doesn't change anything between us.\n\nWe can reschedule our plan for another time. Sorry again for the trouble.\n\nPeace out,\n[Your Name]\n\n---"
results = scorer.score([instruction], [hypo_output], [input_context])
print(results)
```

Results are a list of errors with detailed explanations and reasonable penalty scores:
```json
[
    {
        "num_errors": 2,
        "score": -7.0,
        "errors": {
            "error_0": {
                "location": " \"I suddenly got an opportunity for a vacation so I took it.\"",
                "aspect": " Misunderstanding context",
                "explanation": " The error lies in the context of the reason for cancelling the plan. The original reason was due to illness, but in the incorrect output, it is stated that the cancellation was due to a vacation opportunity, which is a misunderstanding of the context. The correction would be to stick to the original reason for cancelling.",
                "severity": "Major",
                "score_reduction": "5.0"
            },
            "error_1": {
                "location": " \"I hope you can understand my perspective and I hope this incident doesn't change anything between us.\"",
                "aspect": " Inappropriate tone",
                "explanation": " The tone of this sentence is too casual and lacks regret or apology. It's important to maintain a formal and regretful tone in an apology letter. The sentence could be corrected to something like \"I hope you can find it in your heart to forgive me and let this incident not strain our relationship.\"",
                "severity": "Minor",
                "score_reduction": "2.0"
            }
        },
        "raw_output": " The model-generated output contains 2 errors, with a total score reduction of 7.0.\nError location 1: ..."
    }
]
```

Check more usage at our [Github Usage Doc](https://github.com/TIGER-AI-Lab/TIGERScore#usage). Have Fun!

## Citation

If you find our work useful, please cite our paper:
```
@article{jiang2023TIGERScore,
  title={TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks},
  author={Dongfu Jiang, Yishan Li, Ge Zhang, Wenhao Huang, Bill Yuchen Lin, Wenhu Chen},
  journal={arXiv preprint arXiv:2310.00752},
  year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TIGER-Lab__TIGERScore-13B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |56.79|
|AI2 Reasoning Challenge (25-Shot)|59.04|
|HellaSwag (10-Shot)              |82.79|
|MMLU (5-Shot)                    |55.07|
|TruthfulQA (0-shot)              |40.38|
|Winogrande (5-shot)              |74.74|
|GSM8k (5-shot)                   |28.73|