|
"""largely copy from llama and adapt for cogvlm"""
|
|
import warnings
|
|
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
|
|
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
from torchvision import transforms
|
|
from einops import rearrange
|
|
|
|
from decord import VideoReader, cpu
|
|
import decord
|
|
import io
|
|
import numpy as np
|
|
|
|
from transformers import PreTrainedModel, PreTrainedTokenizer
|
|
from transformers.utils.logging import get_logger
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
from torchvision.transforms import Lambda
|
|
from torchvision.transforms._transforms_video import NormalizeVideo, RandomCropVideo, RandomHorizontalFlipVideo, CenterCropVideo
|
|
from pytorchvideo.transforms import ApplyTransformToKey, ShortSideScale
|
|
from .configuration_cogvlm import CogVLMConfig
|
|
from .util import FastRotaryEmbedding
|
|
from .visual import EVA2CLIPModel
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers.utils import ModelOutput
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
LANGUAGE_TOKEN_TYPE = 0
|
|
VISION_TOKEN_TYPE = 1
|
|
|
|
|
|
|
|
def _make_causal_mask(
|
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
|
):
|
|
"""
|
|
Make causal mask used for bi-directional self-attention.
|
|
"""
|
|
bsz, tgt_len = input_ids_shape
|
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
|
mask_cond = torch.arange(mask.size(-1), device=device)
|
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
|
mask = mask.to(dtype)
|
|
|
|
if past_key_values_length > 0:
|
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
bsz, src_len = mask.size()
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-5):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return (self.weight * hidden_states).to(input_dtype)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, x):
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
return down_proj
|
|
|
|
|
|
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
|
|
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
|
|
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
|
|
language_token_mask = ~vision_token_mask
|
|
return vision_token_mask, language_token_mask
|
|
|
|
|
|
class VisionExpertMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.language_mlp = MLP(config)
|
|
|
|
|
|
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
|
|
|
|
|
|
|
|
|
|
|
|
output = self.language_mlp(hidden_states)
|
|
return output
|
|
|
|
|
|
def attention_fn(
|
|
query_layer: "torch.tensor(B, H, L, HD)",
|
|
key_layer: "torch.tensor(B, H, L, HD)",
|
|
value_layer: "torch.tensor(B, H, L, HD)",
|
|
attention_mask: "torch.tensor(B, H, L, HD)",
|
|
*,
|
|
scaling_attention_score: bool = True,
|
|
attention_dropout: nn.Module = None
|
|
):
|
|
attention_mask_bool = (attention_mask == 0)
|
|
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
|
|
is_full = (attention_mask_bool > 0).all()
|
|
if not (int(torch.__version__.split('.')[0]) >= 2):
|
|
warnings.warn("It's recommended to use torch2.0 or higher.")
|
|
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
|
|
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
|
|
return torch.nn.functional.scaled_dot_product_attention(
|
|
query_layer, key_layer, value_layer,
|
|
attn_mask=None,
|
|
dropout_p=dropout_p,
|
|
is_causal=not is_full
|
|
)
|
|
else:
|
|
if scaling_attention_score:
|
|
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
|
attention_scores = attention_scores + attention_mask
|
|
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
|
if attention_dropout is not None:
|
|
attention_scores = attention_dropout(attention_scores)
|
|
context_layer = torch.matmul(attention_scores, value_layer)
|
|
return context_layer
|
|
|
|
|
|
class VisionExpertAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.num_multi_query_heads = config.num_multi_query_heads
|
|
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
|
self.stride = [self.num_attention_heads, self.num_multi_query_heads, self.num_multi_query_heads]
|
|
self.qkv_size = self.hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False, base=500000)
|
|
|
|
|
|
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=False)
|
|
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
|
|
|
def _transpose_for_scores(self, tensor):
|
|
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
|
new_tensor_shape = tensor.size()[:-1] + \
|
|
(-1,
|
|
self.hidden_size_per_attention_head)
|
|
tensor = tensor.view(*new_tensor_shape)
|
|
return tensor.permute(0, 2, 1, 3)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
token_type_ids: torch.LongTensor,
|
|
position_ids: torch.LongTensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
|
|
shape = list(hidden_states.shape)
|
|
shape[-1] = self.qkv_size
|
|
|
|
|
|
|
|
mixed_raw_layer = self.language_expert_query_key_value(hidden_states)
|
|
|
|
|
|
factor = mixed_raw_layer.size()[-1] // sum(self.stride)
|
|
query_states, key_states, value_states = torch.split(mixed_raw_layer, [factor * x for x in self.stride], dim=-1)
|
|
|
|
query_states = self._transpose_for_scores(query_states)
|
|
key_states = self._transpose_for_scores(key_states)
|
|
value_states = self._transpose_for_scores(value_states)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids=position_ids, max_seqlen=position_ids.max() + 1)
|
|
|
|
if past_key_value is not None:
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
key_states = key_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1, -1).contiguous().view(
|
|
bsz, self.num_attention_heads, *key_states.shape[2:])
|
|
value_states = value_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1,
|
|
-1).contiguous().view(bsz, self.num_attention_heads, *value_states.shape[2:])
|
|
|
|
context_layer = attention_fn(
|
|
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
|
scaling_attention_score=True, attention_dropout=None)
|
|
if context_layer.size() != (bsz, self.num_attention_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_attention_heads, q_len, self.head_dim)}, but is"
|
|
f" {context_layer.size()}"
|
|
)
|
|
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = self.language_expert_dense(context_layer)
|
|
|
|
if output_attentions:
|
|
warnings.warn("output_attentions is not implemented.")
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
class CogVLMDecoderLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.self_attn = VisionExpertAttention(config=config)
|
|
self.mlp = VisionExpertMLP(config)
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
token_type_ids: torch.LongTensor,
|
|
position_ids: torch.LongTensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
class CogVLMPreTrainedModel(PreTrainedModel):
|
|
config_class = CogVLMConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = False
|
|
_no_split_modules = ["CogVLMDecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
|
|
if images_list is None or len(images_list) == 0:
|
|
return True
|
|
for image_list in images_list:
|
|
if len(image_list):
|
|
return False
|
|
return True
|
|
|
|
|
|
def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
|
|
if attention_mask is not None:
|
|
tmp = x.clone()
|
|
tmp[~(attention_mask.bool())] = -1
|
|
else:
|
|
tmp = x.clone()
|
|
|
|
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
|
|
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
|
|
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
|
|
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
|
|
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
|
|
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
|
|
|
|
y = torch.zeros_like(x, dtype=torch.long)
|
|
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
|
|
y = y.cumsum(dim=-1)
|
|
return y
|
|
|
|
|
|
class CogVLMVideoModel(CogVLMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.padding_idx = 128002
|
|
self.vocab_size = config.vocab_size
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.vision = EVA2CLIPModel(config)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.post_init()
|
|
|
|
def encode_images(self, images: List[List[torch.Tensor]], ) -> torch.Tensor:
|
|
images_list, images = images, []
|
|
|
|
images = []
|
|
for image_list in images_list:
|
|
for image in image_list:
|
|
images.append(image)
|
|
|
|
|
|
images_features = self.vision(images[0])
|
|
return images_features
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
images: List[List[torch.Tensor]] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
|
|
|
|
if past_key_values is not None:
|
|
pass
|
|
else:
|
|
|
|
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
|
if not is_empty(images):
|
|
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
|
|
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
images_features = self.encode_images(images)
|
|
images_features = rearrange(images_features, 'b n d -> (b n) d')
|
|
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
|
|
|
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
|
|
else:
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE
|
|
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if position_ids is None:
|
|
position_ids = build_position_ids(token_type_ids, attention_mask)
|
|
input_ids = None
|
|
return self.llm_forward(
|
|
input_ids=input_ids,
|
|
token_type_ids=token_type_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
def llm_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
token_type_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
"""largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(
|
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
|
)
|
|
attention_mask = self._prepare_decoder_attention_mask(
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
token_type_ids=token_type_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
|
|
|
|
|
combined_attention_mask = None
|
|
if input_shape[-1] > 1:
|
|
combined_attention_mask = _make_causal_mask(
|
|
input_shape,
|
|
inputs_embeds.dtype,
|
|
device=inputs_embeds.device,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
|
inputs_embeds.device
|
|
)
|
|
combined_attention_mask = (
|
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
|
)
|
|
|
|
return combined_attention_mask
|
|
|
|
|
|
def _history_to_prompt(signal_type, history, query):
|
|
if signal_type == 'base':
|
|
return query
|
|
elif signal_type == 'vqa':
|
|
answer_format = 'Short answer:'
|
|
elif signal_type == 'chat':
|
|
answer_format = 'Answer:'
|
|
else:
|
|
assert False, f"Unknown signal type {signal_type}"
|
|
|
|
prompt = ''
|
|
for i, (old_query, response) in enumerate(history):
|
|
prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
|
|
prompt += 'Question: {} {}'.format(query, answer_format)
|
|
return prompt
|
|
|
|
def load_video(video_path):
|
|
mp4_stream = None
|
|
decord.bridge.set_bridge('torch')
|
|
with open(video_path, 'rb') as f:
|
|
mp4_stream = f.read()
|
|
clip_end_sec = 60
|
|
clip_start_sec = 0
|
|
num_frames = 24
|
|
|
|
if mp4_stream is not None:
|
|
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
|
|
else:
|
|
decord_vr = VideoReader(video_path, ctx=cpu(0))
|
|
duration = len(decord_vr)
|
|
start_frame = int(clip_start_sec * decord_vr.get_avg_fps())
|
|
end_frame = min(duration, int(clip_end_sec*decord_vr.get_avg_fps())) if \
|
|
clip_end_sec is not None else duration
|
|
frame_id_list = np.linspace(start_frame, end_frame-1, num_frames, dtype=int)
|
|
|
|
video_data = decord_vr.get_batch(frame_id_list)
|
|
video_data = video_data.permute(3, 0, 1, 2)
|
|
|
|
return video_data
|
|
|
|
def load_video_1fps(video_path):
|
|
mp4_stream = None
|
|
decord.bridge.set_bridge('torch')
|
|
with open(video_path, 'rb') as f:
|
|
mp4_stream = f.read()
|
|
|
|
num_frames = 24
|
|
|
|
if mp4_stream is not None:
|
|
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
|
|
else:
|
|
decord_vr = VideoReader(video_path, ctx=cpu(0))
|
|
|
|
total_frames = len(decord_vr)
|
|
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
|
|
timestamps = [i[0] for i in timestamps]
|
|
|
|
max_second = round(max(timestamps)) + 1
|
|
frame_id_list = []
|
|
for second in range(max_second):
|
|
closest_num = min(timestamps, key=lambda x: abs(x - second))
|
|
index = timestamps.index(closest_num)
|
|
frame_id_list.append(index)
|
|
if len(frame_id_list) > num_frames:
|
|
break
|
|
|
|
video_data = decord_vr.get_batch(frame_id_list)
|
|
video_data = video_data.permute(3, 0, 1, 2)
|
|
|
|
return video_data
|
|
|
|
|
|
|
|
class CogVLMVideoForCausalLM(CogVLMPreTrainedModel):
|
|
_auto_class = "AutoModelForCausalLM"
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = CogVLMVideoModel(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
self.video_downsample = 1
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
images: List[List[torch.Tensor]] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
images=images,
|
|
token_type_ids=token_type_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def _prepare_attention_mask_for_generation(
|
|
self,
|
|
inputs: torch.Tensor,
|
|
pad_token_id: Optional[int],
|
|
eos_token_id: Optional[Union[int, List[int]]],
|
|
) -> torch.LongTensor:
|
|
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if position_ids is None:
|
|
position_ids = build_position_ids(token_type_ids, attention_mask)
|
|
|
|
if past_key_values:
|
|
input_ids = input_ids[:, -1:]
|
|
token_type_ids = token_type_ids[:, -1:]
|
|
position_ids = position_ids[:, -1:]
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"token_type_ids": token_type_ids,
|
|
"images": images,
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
def _update_model_kwargs_for_generation(
|
|
self,
|
|
outputs: "ModelOutput",
|
|
model_kwargs: Dict[str, Any],
|
|
is_encoder_decoder: bool = False,
|
|
standardize_cache_format: bool = False,
|
|
) -> Dict[str, Any]:
|
|
|
|
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
|
outputs, standardize_cache_format=standardize_cache_format
|
|
)
|
|
if getattr(outputs, "state", None) is not None:
|
|
model_kwargs["state"] = outputs.state
|
|
|
|
|
|
if "token_type_ids" in model_kwargs:
|
|
token_type_ids = model_kwargs["token_type_ids"]
|
|
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype, device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
|
|
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
|
|
|
if not is_encoder_decoder:
|
|
|
|
if "attention_mask" in model_kwargs:
|
|
attention_mask = model_kwargs["attention_mask"]
|
|
model_kwargs["attention_mask"] = torch.cat(
|
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
|
)
|
|
else:
|
|
|
|
if "decoder_attention_mask" in model_kwargs:
|
|
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
|
model_kwargs["decoder_attention_mask"] = torch.cat(
|
|
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
|
dim=-1,
|
|
)
|
|
|
|
return model_kwargs
|
|
|
|
def _reorder_cache(self, past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
|
|
|
|
def build_conversation_input_ids(
|
|
self,
|
|
tokenizer: "PreTrainedTokenizer",
|
|
*,
|
|
query: str,
|
|
history: Optional[List[Tuple[str, str]]] = None,
|
|
images: Optional[List["PIL.Image"]] = None,
|
|
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
|
answer: str = None,
|
|
):
|
|
image_size: int = self.config.vision_config['image_size']
|
|
template_version = template_version or self.config.template_version
|
|
assert images is None or len(images) <= 1, f"not support multi images by now."
|
|
history = history or []
|
|
text = _history_to_prompt(template_version, history, query)
|
|
input_ids = [tokenizer.bos_token_id]
|
|
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
|
add_time_indices = False
|
|
if images is not None and len(images) == 1:
|
|
|
|
transform = transforms.Compose(
|
|
[
|
|
|
|
Lambda(lambda x: x / 255.0),
|
|
NormalizeVideo(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
|
|
ShortSideScale(size=image_size),
|
|
CenterCropVideo(image_size),
|
|
|
|
]
|
|
)
|
|
images = [transform(images[0]).transpose(0, 1)]
|
|
num_eois = len(images[0])
|
|
tokenizer.pad_token_id = 128002
|
|
vision_token_num = (64 + 2) * num_eois
|
|
if not add_time_indices:
|
|
input_ids += [tokenizer.pad_token_id] * vision_token_num
|
|
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
|
else:
|
|
video_ids, video_type_ids = [], []
|
|
for _time_idx in range(num_eois):
|
|
video_ids += [tokenizer.pad_token_id] * vision_token_num
|
|
video_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
|
|
|
time_indices = tokenizer.encode(str(_time_idx), add_special_tokens=False)
|
|
video_ids += time_indices
|
|
video_type_ids += [LANGUAGE_TOKEN_TYPE] * len(time_indices)
|
|
|
|
input_ids += video_ids
|
|
token_type_ids += video_type_ids
|
|
|
|
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
|
|
|
if answer is not None:
|
|
answer_ids = tokenizer.encode(answer, add_special_tokens=False)
|
|
answer_ids += [tokenizer.eos_token_id]
|
|
text_ids += answer_ids
|
|
|
|
|
|
input_ids += text_ids
|
|
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
|
|
attention_mask = [1] * len(input_ids)
|
|
if answer is not None:
|
|
labels = [-100 for _ in range(len(input_ids) - len(answer_ids))] + answer_ids
|
|
labels = torch.tensor(labels, dtype=torch.long)
|
|
else:
|
|
labels = None
|
|
|
|
return {
|
|
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
|
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
|
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
|
'images': images,
|
|
'labels': labels,
|
|
}
|
|
|
|
|