|
import math |
|
import sys |
|
import torch |
|
import torch.utils.checkpoint |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss |
|
from torch.nn.utils import skip_init |
|
from typing import Optional, Tuple, Union, List, Dict, Any |
|
|
|
import pdb |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging, is_torch_npu_available |
|
from transformers.generation.logits_process import LogitsProcessor |
|
from transformers.generation.utils import ( |
|
LogitsProcessorList, |
|
StoppingCriteriaList, |
|
GenerationConfig, |
|
ModelOutput, |
|
) |
|
|
|
from .visual import EVA2CLIPModel |
|
from .configuration_chatglm import ChatGLMConfig |
|
|
|
try: |
|
from transformers.utils import ( |
|
is_flash_attn_greater_or_equal_2_10, |
|
is_flash_attn_2_available, |
|
) |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
except: |
|
pass |
|
|
|
if sys.platform != "darwin" and not is_torch_npu_available(): |
|
torch._C._jit_set_profiling_mode(False) |
|
torch._C._jit_set_profiling_executor(False) |
|
torch._C._jit_override_can_fuse_on_cpu(True) |
|
torch._C._jit_override_can_fuse_on_gpu(True) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LANGUAGE_TOKEN_TYPE = 0 |
|
VISION_TOKEN_TYPE = 1 |
|
|
|
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM" |
|
_CONFIG_FOR_DOC = "ChatGLMConfig" |
|
|
|
|
|
def default_init(cls, *args, **kwargs): |
|
return cls(*args, **kwargs) |
|
|
|
|
|
class InvalidScoreLogitsProcessor(LogitsProcessor): |
|
def __call__( |
|
self, input_ids: torch.LongTensor, scores: torch.FloatTensor |
|
) -> torch.FloatTensor: |
|
if torch.isnan(scores).any() or torch.isinf(scores).any(): |
|
scores.zero_() |
|
scores[..., 198] = 5e4 |
|
return scores |
|
|
|
|
|
class PrefixEncoder(torch.nn.Module): |
|
""" |
|
The torch.nn model to encode the prefix |
|
Input shape: (batch-size, prefix-length) |
|
Output shape: (batch-size, prefix-length, 2*layers*hidden) |
|
""" |
|
|
|
def __init__(self, config: ChatGLMConfig): |
|
super().__init__() |
|
self.prefix_projection = config.prefix_projection |
|
if self.prefix_projection: |
|
|
|
kv_size = ( |
|
config.num_layers |
|
* config.kv_channels |
|
* config.multi_query_group_num |
|
* 2 |
|
) |
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) |
|
self.trans = torch.nn.Sequential( |
|
torch.nn.Linear(kv_size, config.hidden_size), |
|
torch.nn.Tanh(), |
|
torch.nn.Linear(config.hidden_size, kv_size), |
|
) |
|
else: |
|
self.embedding = torch.nn.Embedding( |
|
config.pre_seq_len, |
|
config.num_layers |
|
* config.kv_channels |
|
* config.multi_query_group_num |
|
* 2, |
|
) |
|
|
|
def forward(self, prefix: torch.Tensor): |
|
if self.prefix_projection: |
|
prefix_tokens = self.embedding(prefix) |
|
past_key_values = self.trans(prefix_tokens) |
|
else: |
|
past_key_values = self.embedding(prefix) |
|
return past_key_values |
|
|
|
|
|
def split_tensor_along_last_dim( |
|
tensor: torch.Tensor, |
|
num_partitions: int, |
|
contiguous_split_chunks: bool = False, |
|
) -> List[torch.Tensor]: |
|
"""Split a tensor along its last dimension. |
|
|
|
Arguments: |
|
tensor: input tensor. |
|
num_partitions: number of partitions to split the tensor |
|
contiguous_split_chunks: If True, make each chunk contiguous |
|
in memory. |
|
|
|
Returns: |
|
A list of Tensors |
|
""" |
|
|
|
last_dim = tensor.dim() - 1 |
|
last_dim_size = tensor.size()[last_dim] // num_partitions |
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) |
|
|
|
if contiguous_split_chunks: |
|
return tuple(chunk.contiguous() for chunk in tensor_list) |
|
|
|
return tensor_list |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None): |
|
super().__init__() |
|
inv_freq = 1.0 / ( |
|
10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim) |
|
) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.dim = dim |
|
self.original_impl = original_impl |
|
self.rope_ratio = rope_ratio |
|
|
|
def impl(self, seq_length: int, dim: int, device: torch.device, dtype: torch.dtype): |
|
base = 10000 * self.rope_ratio |
|
inv_freq = 1.0 / ( |
|
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim) |
|
) |
|
seq = torch.arange(seq_length, device=inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(seq, inv_freq) |
|
|
|
|
|
|
|
|
|
emb = torch.stack((freqs.cos(), freqs.sin()), dim=-1).to(dtype=dtype) |
|
return emb |
|
|
|
def forward_impl( |
|
self, |
|
seq_len: int, |
|
n_elem: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
base: int = 10000, |
|
): |
|
"""Enhanced Transformer with Rotary Position Embedding. |
|
|
|
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ |
|
transformers/rope/__init__.py. MIT License: |
|
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. |
|
""" |
|
|
|
base = base * self.rope_ratio |
|
theta = 1.0 / ( |
|
base |
|
** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem) |
|
) |
|
|
|
|
|
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) |
|
|
|
|
|
idx_theta = torch.outer(seq_idx, theta).float() |
|
|
|
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) |
|
|
|
|
|
if dtype in (torch.float16, torch.bfloat16, torch.int8): |
|
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() |
|
return cache |
|
|
|
def forward(self, max_seq_len, offset=0): |
|
if self.original_impl: |
|
return self.forward_impl( |
|
max_seq_len, |
|
self.dim, |
|
dtype=self.inv_freq.dtype, |
|
device=self.inv_freq.device, |
|
) |
|
else: |
|
return self.impl( |
|
max_seq_len, |
|
self.dim, |
|
dtype=self.inv_freq.dtype, |
|
device=self.inv_freq.device, |
|
) |
|
|
|
|
|
@torch.jit.script |
|
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: |
|
|
|
sq = x.size(1) |
|
rot_dim = rope_cache.shape[-2] * 2 |
|
x, x_pass = x[..., :rot_dim], x[..., rot_dim:] |
|
|
|
rope_cache = rope_cache[:, :sq] |
|
xshaped = x.chunk(2, -1) |
|
cos, sin = rope_cache[...,0].unsqueeze(2), rope_cache[...,1].unsqueeze(2) |
|
x_out2 = torch.concat( |
|
[ |
|
xshaped[0] * cos - xshaped[1] * sin, |
|
xshaped[1] * cos + xshaped[0] * sin, |
|
], |
|
-1, |
|
) |
|
return torch.cat((x_out2, x_pass), dim=-1) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter( |
|
torch.empty(normalized_shape, device=device, dtype=dtype) |
|
) |
|
self.eps = eps |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) |
|
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
class CoreAttention(torch.nn.Module): |
|
def __init__(self, config: ChatGLMConfig, layer_number): |
|
super(CoreAttention, self).__init__() |
|
|
|
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling |
|
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 |
|
if self.apply_query_key_layer_scaling: |
|
self.attention_softmax_in_fp32 = True |
|
self.layer_number = max(1, layer_number) |
|
|
|
projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
|
|
self.hidden_size_per_partition = projection_size |
|
self.hidden_size_per_attention_head = ( |
|
projection_size // config.num_attention_heads |
|
) |
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
|
|
coeff = None |
|
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) |
|
if self.apply_query_key_layer_scaling: |
|
coeff = self.layer_number |
|
self.norm_factor *= coeff |
|
self.coeff = coeff |
|
|
|
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) |
|
|
|
def forward(self, query_layer, key_layer, value_layer, attention_mask): |
|
pytorch_major_version = int(torch.__version__.split(".")[0]) |
|
if pytorch_major_version >= 2: |
|
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: |
|
context_layer = torch.nn.functional.scaled_dot_product_attention( |
|
query_layer, key_layer, value_layer, is_causal=True |
|
) |
|
else: |
|
if attention_mask is not None: |
|
attention_mask = ~attention_mask |
|
context_layer = torch.nn.functional.scaled_dot_product_attention( |
|
query_layer, key_layer, value_layer, attention_mask |
|
) |
|
context_layer = context_layer.transpose(1, 2).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + ( |
|
self.hidden_size_per_partition, |
|
) |
|
context_layer = context_layer.reshape(*new_context_layer_shape) |
|
else: |
|
|
|
|
|
|
|
output_size = ( |
|
query_layer.size(0), |
|
query_layer.size(1), |
|
query_layer.size(2), |
|
key_layer.size(2), |
|
) |
|
|
|
|
|
query_layer = query_layer.view( |
|
output_size[0] * output_size[1], output_size[2], -1 |
|
) |
|
|
|
key_layer = key_layer.view( |
|
output_size[0] * output_size[1], output_size[3], -1 |
|
) |
|
|
|
|
|
matmul_input_buffer = torch.empty( |
|
output_size[0] * output_size[1], |
|
output_size[2], |
|
output_size[3], |
|
dtype=query_layer.dtype, |
|
device=query_layer.device, |
|
) |
|
|
|
|
|
matmul_result = torch.baddbmm( |
|
matmul_input_buffer, |
|
query_layer, |
|
key_layer.transpose(1, 2), |
|
beta=0.0, |
|
alpha=(1.0 / self.norm_factor), |
|
) |
|
|
|
|
|
attention_scores = matmul_result.view(*output_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.attention_softmax_in_fp32: |
|
attention_scores = attention_scores.float() |
|
if self.coeff is not None: |
|
attention_scores = attention_scores * self.coeff |
|
if ( |
|
attention_mask is None |
|
and attention_scores.shape[2] == attention_scores.shape[3] |
|
): |
|
attention_mask = torch.ones( |
|
output_size[0], |
|
1, |
|
output_size[2], |
|
output_size[3], |
|
device=attention_scores.device, |
|
dtype=torch.bool, |
|
) |
|
attention_mask.tril_() |
|
attention_mask = ~attention_mask |
|
if attention_mask is not None: |
|
attention_scores = attention_scores.masked_fill( |
|
attention_mask, float("-inf") |
|
) |
|
attention_probs = F.softmax(attention_scores, dim=-1) |
|
attention_probs = attention_probs.type_as(value_layer) |
|
|
|
|
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = ( |
|
value_layer.size(1), |
|
value_layer.size(2), |
|
query_layer.size(0), |
|
value_layer.size(3), |
|
) |
|
|
|
value_layer = value_layer.view( |
|
output_size[0] * output_size[1], value_layer.size(2), -1 |
|
) |
|
|
|
attention_probs = attention_probs.view( |
|
output_size[0] * output_size[1], output_size[2], -1 |
|
) |
|
|
|
context_layer = torch.bmm(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.view(*output_size) |
|
|
|
context_layer = context_layer.transpose(1, 2).contiguous() |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + ( |
|
self.hidden_size_per_partition, |
|
) |
|
context_layer = context_layer.reshape(*new_context_layer_shape) |
|
|
|
return context_layer |
|
|
|
|
|
class SdpaAttention(CoreAttention): |
|
def forward(self, query_layer, key_layer, value_layer, attention_mask): |
|
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: |
|
context_layer = torch.nn.functional.scaled_dot_product_attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
is_causal=True, |
|
dropout_p=self.config.attention_dropout if self.training else 0.0, |
|
) |
|
else: |
|
if attention_mask is not None: |
|
attention_mask = ~attention_mask |
|
context_layer = torch.nn.functional.scaled_dot_product_attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask, |
|
dropout_p=self.config.attention_dropout if self.training else 0.0, |
|
) |
|
context_layer = context_layer.transpose(1, 2).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + ( |
|
self.hidden_size_per_partition, |
|
) |
|
context_layer = context_layer.reshape(*new_context_layer_shape) |
|
return context_layer |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class FlashAttention2(CoreAttention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward(self, query_states, key_states, value_states, attention_mask): |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
batch_size, query_length = query_states.shape[:2] |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
dropout = self.config.attention_dropout if self.training else 0.0 |
|
|
|
if attention_mask is not None: |
|
( |
|
query_states, |
|
key_states, |
|
value_states, |
|
indices_q, |
|
cu_seq_lens, |
|
max_seq_lens, |
|
) = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=None, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input( |
|
attn_output_unpad, indices_q, batch_size, query_length |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=None, |
|
causal=causal, |
|
) |
|
attn_output = attn_output.reshape( |
|
batch_size, query_length, self.hidden_size_per_partition |
|
).contiguous() |
|
return attn_output |
|
|
|
def _upad_input( |
|
self, query_layer, key_layer, value_layer, attention_mask, query_length |
|
): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape( |
|
batch_size * kv_seq_len, |
|
self.num_attention_heads_per_partition, |
|
head_dim, |
|
), |
|
indices_k, |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( |
|
query_layer, attention_mask |
|
) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
CORE_ATTENTION_CLASSES = { |
|
"eager": CoreAttention, |
|
"sdpa": SdpaAttention, |
|
"flash_attention_2": FlashAttention2, |
|
} |
|
|
|
|
|
class SelfAttention(torch.nn.Module): |
|
"""Parallel self-attention layer abstract class. |
|
|
|
Self-attention layer takes input with size [s, b, h] |
|
and returns output of the same size. |
|
""" |
|
|
|
def __init__(self, config: ChatGLMConfig, layer_number, device=None): |
|
super(SelfAttention, self).__init__() |
|
self.layer_number = max(1, layer_number) |
|
|
|
self.projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
|
|
self.hidden_size_per_attention_head = ( |
|
self.projection_size // config.num_attention_heads |
|
) |
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
|
|
self.multi_query_attention = config.multi_query_attention |
|
self.qkv_hidden_size = 3 * self.projection_size |
|
self.original_rope = config.original_rope |
|
if self.multi_query_attention: |
|
self.num_multi_query_groups_per_partition = config.multi_query_group_num |
|
self.qkv_hidden_size = ( |
|
self.projection_size |
|
+ 2 * self.hidden_size_per_attention_head * config.multi_query_group_num |
|
) |
|
self.query_key_value = nn.Linear( |
|
config.hidden_size, |
|
self.qkv_hidden_size, |
|
bias=config.add_bias_linear or config.add_qkv_bias, |
|
device=device, |
|
**_config_to_kwargs(config), |
|
) |
|
|
|
self.core_attention = CoreAttention(config, self.layer_number) |
|
|
|
|
|
self.dense = nn.Linear( |
|
self.projection_size, |
|
config.hidden_size, |
|
bias=config.add_bias_linear, |
|
device=device, |
|
**_config_to_kwargs(config), |
|
) |
|
|
|
def _allocate_memory( |
|
self, inference_max_sequence_len, batch_size, device=None, dtype=None |
|
): |
|
if self.multi_query_attention: |
|
num_attention_heads = self.num_multi_query_groups_per_partition |
|
else: |
|
num_attention_heads = self.num_attention_heads_per_partition |
|
return torch.empty( |
|
inference_max_sequence_len, |
|
batch_size, |
|
num_attention_heads, |
|
self.hidden_size_per_attention_head, |
|
dtype=dtype, |
|
device=device, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=None, |
|
use_cache=True, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mixed_x_layer = self.query_key_value(hidden_states) |
|
|
|
if self.multi_query_attention: |
|
(query_layer, key_layer, value_layer) = mixed_x_layer.split( |
|
[ |
|
self.num_attention_heads_per_partition |
|
* self.hidden_size_per_attention_head, |
|
self.num_multi_query_groups_per_partition |
|
* self.hidden_size_per_attention_head, |
|
self.num_multi_query_groups_per_partition |
|
* self.hidden_size_per_attention_head, |
|
], |
|
dim=-1, |
|
) |
|
query_layer = query_layer.view( |
|
query_layer.size()[:-1] |
|
+ ( |
|
self.num_attention_heads_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
key_layer = key_layer.view( |
|
key_layer.size()[:-1] |
|
+ ( |
|
self.num_multi_query_groups_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
value_layer = value_layer.view( |
|
value_layer.size()[:-1] |
|
+ ( |
|
self.num_multi_query_groups_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
else: |
|
new_tensor_shape = mixed_x_layer.size()[:-1] + ( |
|
self.num_attention_heads_per_partition, |
|
3 * self.hidden_size_per_attention_head, |
|
) |
|
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) |
|
|
|
|
|
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim( |
|
mixed_x_layer, 3 |
|
) |
|
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None: |
|
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) |
|
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) |
|
|
|
|
|
|
|
query_layer, key_layer, value_layer = [ |
|
k.transpose(1, 2) for k in [query_layer, key_layer, value_layer] |
|
] |
|
|
|
|
|
if kv_cache is not None: |
|
cache_k, cache_v = kv_cache |
|
key_layer = torch.cat((cache_k, key_layer), dim=2) |
|
value_layer = torch.cat((cache_v, value_layer), dim=2) |
|
|
|
if use_cache: |
|
kv_cache = (key_layer, value_layer) |
|
else: |
|
kv_cache = None |
|
|
|
if self.multi_query_attention: |
|
key_layer = key_layer.repeat_interleave(self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, dim=1) |
|
value_layer = value_layer.repeat_interleave(self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
context_layer = self.core_attention( |
|
query_layer, key_layer, value_layer, attention_mask |
|
) |
|
|
|
|
|
|
|
|
|
|
|
output = self.dense(context_layer) |
|
|
|
return output, kv_cache |
|
|
|
|
|
def _config_to_kwargs(args): |
|
common_kwargs = { |
|
"dtype": args.torch_dtype, |
|
} |
|
return common_kwargs |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
"""MLP. |
|
|
|
MLP will take the input with h hidden state, project it to 4*h |
|
hidden dimension, perform nonlinear transformation, and project the |
|
state back into h hidden dimension. |
|
""" |
|
|
|
def __init__(self, config: ChatGLMConfig, device=None): |
|
super(MLP, self).__init__() |
|
|
|
self.add_bias = config.add_bias_linear |
|
|
|
|
|
self.dense_h_to_4h = nn.Linear( |
|
config.hidden_size, |
|
config.ffn_hidden_size * 2, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config), |
|
) |
|
|
|
def swiglu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return F.silu(x[0]) * x[1] |
|
|
|
self.activation_func = swiglu |
|
|
|
|
|
self.dense_4h_to_h = nn.Linear( |
|
config.ffn_hidden_size, |
|
config.hidden_size, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config), |
|
) |
|
|
|
def forward(self, hidden_states): |
|
|
|
intermediate_parallel = self.dense_h_to_4h(hidden_states) |
|
intermediate_parallel = self.activation_func(intermediate_parallel) |
|
|
|
output = self.dense_4h_to_h(intermediate_parallel) |
|
return output |
|
|
|
|
|
class GLMBlock(torch.nn.Module): |
|
"""A single transformer layer. |
|
|
|
Transformer layer takes input with size [s, b, h] and returns an |
|
output of the same size. |
|
""" |
|
|
|
def __init__(self, config: ChatGLMConfig, layer_number, device=None): |
|
super(GLMBlock, self).__init__() |
|
self.layer_number = layer_number |
|
|
|
self.apply_residual_connection_post_layernorm = ( |
|
config.apply_residual_connection_post_layernorm |
|
) |
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
|
|
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm |
|
|
|
self.input_layernorm = LayerNormFunc( |
|
config.hidden_size, |
|
eps=config.layernorm_epsilon, |
|
device=device, |
|
dtype=config.torch_dtype, |
|
) |
|
|
|
|
|
self.self_attention = SelfAttention(config, layer_number, device=device) |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
|
|
self.post_attention_layernorm = LayerNormFunc( |
|
config.hidden_size, |
|
eps=config.layernorm_epsilon, |
|
device=device, |
|
dtype=config.torch_dtype, |
|
) |
|
|
|
|
|
self.mlp = MLP(config, device=device) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=None, |
|
use_cache=True, |
|
): |
|
|
|
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
attention_output, kv_cache = self.self_attention( |
|
layernorm_output, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=kv_cache, |
|
use_cache=use_cache, |
|
) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
layernorm_input = torch.nn.functional.dropout( |
|
attention_output, p=self.hidden_dropout, training=self.training |
|
) |
|
layernorm_input = residual + layernorm_input |
|
|
|
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input) |
|
|
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = layernorm_input |
|
|
|
output = torch.nn.functional.dropout( |
|
mlp_output, p=self.hidden_dropout, training=self.training |
|
) |
|
output = residual + output |
|
|
|
return output, kv_cache |
|
|
|
|
|
class GLMTransformer(torch.nn.Module): |
|
"""Transformer class.""" |
|
|
|
def __init__(self, config: ChatGLMConfig, device=None): |
|
super(GLMTransformer, self).__init__() |
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
self.post_layer_norm = config.post_layer_norm |
|
|
|
|
|
self.num_layers = config.num_layers |
|
|
|
|
|
def build_layer(layer_number): |
|
return GLMBlock(config, layer_number, device=device) |
|
|
|
self.layers = torch.nn.ModuleList( |
|
[build_layer(i + 1) for i in range(self.num_layers)] |
|
) |
|
|
|
if self.post_layer_norm: |
|
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm |
|
|
|
self.final_layernorm = LayerNormFunc( |
|
config.hidden_size, |
|
eps=config.layernorm_epsilon, |
|
device=device, |
|
dtype=config.torch_dtype, |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _get_layer(self, layer_number): |
|
return self.layers[layer_number] |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_caches=None, |
|
use_cache: Optional[bool] = True, |
|
output_hidden_states: Optional[bool] = False, |
|
): |
|
if not kv_caches: |
|
kv_caches = [None for _ in range(self.num_layers)] |
|
presents = () if use_cache else None |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
all_self_attentions = None |
|
all_hidden_states = () if output_hidden_states else None |
|
for index in range(self.num_layers): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer = self._get_layer(index) |
|
if self.gradient_checkpointing and self.training: |
|
layer_ret = torch.utils.checkpoint.checkpoint( |
|
layer, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_caches[index], |
|
use_cache, |
|
use_reentrant=False, |
|
) |
|
else: |
|
layer_ret = layer( |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=kv_caches[index], |
|
use_cache=use_cache, |
|
) |
|
hidden_states, kv_cache = layer_ret |
|
if use_cache: |
|
presents = presents + (kv_cache,) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
if self.post_layer_norm: |
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
return hidden_states, presents, all_hidden_states, all_self_attentions |
|
|
|
|
|
class ChatGLMPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and |
|
a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
is_parallelizable = False |
|
supports_gradient_checkpointing = True |
|
config_class = ChatGLMConfig |
|
base_model_prefix = "transformer" |
|
_no_split_modules = ["GLMBlock"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
return |
|
|
|
def get_masks(self, input_embeds, past_key_values, padding_mask=None): |
|
batch_size, seq_length, embed_size = input_embeds.shape |
|
full_attention_mask = torch.ones( |
|
batch_size, seq_length, seq_length, device=input_embeds.device |
|
) |
|
full_attention_mask.tril_() |
|
past_length = 0 |
|
if past_key_values: |
|
past_length = past_key_values[0][0].shape[2] |
|
if past_length: |
|
full_attention_mask = torch.cat( |
|
( |
|
torch.ones( |
|
batch_size, seq_length, past_length, device=input_embeds.device |
|
), |
|
full_attention_mask, |
|
), |
|
dim=-1, |
|
) |
|
if padding_mask is not None: |
|
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) |
|
if not past_length and padding_mask is not None: |
|
full_attention_mask -= padding_mask.unsqueeze(-1) - 1 |
|
full_attention_mask = (full_attention_mask < 0.5).bool() |
|
full_attention_mask.unsqueeze_(1) |
|
return full_attention_mask |
|
|
|
def get_position_ids(self, input_ids, device): |
|
batch_size, seq_length = input_ids.shape |
|
position_ids = ( |
|
torch.arange(seq_length, dtype=torch.long, device=device) |
|
.unsqueeze(0) |
|
.repeat(batch_size, 1) |
|
) |
|
return position_ids |
|
|
|
def get_multimodal_position_ids(self, input_ids, device): |
|
batch_size, seq_length = input_ids.shape |
|
position_ids = ( |
|
torch.arange(seq_length, dtype=torch.long, device=device) |
|
.unsqueeze(0) |
|
.repeat(batch_size, 1) |
|
) |
|
|
|
|
|
class Embedding(torch.nn.Module): |
|
"""Language model embeddings.""" |
|
|
|
def __init__(self, config: ChatGLMConfig, device=None): |
|
super(Embedding, self).__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
|
|
self.word_embeddings = nn.Embedding( |
|
config.padded_vocab_size, |
|
self.hidden_size, |
|
dtype=config.torch_dtype, |
|
device=device, |
|
) |
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
|
|
def forward(self, input_ids): |
|
|
|
words_embeddings = self.word_embeddings(input_ids) |
|
embeddings = words_embeddings |
|
|
|
if self.fp32_residual_connection: |
|
embeddings = embeddings.float() |
|
return embeddings |
|
|
|
|
|
def is_empty(images_list: Optional[List[List[torch.Tensor]]]): |
|
if images_list is None or len(images_list) == 0: |
|
return True |
|
for image_list in images_list: |
|
if image_list is not None: |
|
return False |
|
return True |
|
|
|
|
|
class ChatGLMModel(ChatGLMPreTrainedModel): |
|
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): |
|
super().__init__(config) |
|
if empty_init: |
|
init_method = skip_init |
|
else: |
|
init_method = default_init |
|
init_kwargs = {} |
|
if device is not None: |
|
init_kwargs["device"] = device |
|
self.embedding = init_method(Embedding, config, **init_kwargs) |
|
self.num_layers = config.num_layers |
|
self.multi_query_group_num = config.multi_query_group_num |
|
self.kv_channels = config.kv_channels |
|
|
|
|
|
self.seq_length = config.seq_length |
|
rotary_dim = ( |
|
config.hidden_size // config.num_attention_heads |
|
if config.kv_channels is None |
|
else config.kv_channels |
|
) |
|
|
|
self.rotary_pos_emb = RotaryEmbedding( |
|
rotary_dim // 2, |
|
rope_ratio=config.rope_ratio, |
|
original_impl=config.original_rope, |
|
device=device, |
|
dtype=config.torch_dtype, |
|
) |
|
self.encoder = init_method(GLMTransformer, config, **init_kwargs) |
|
self.output_layer = init_method( |
|
nn.Linear, |
|
config.hidden_size, |
|
config.padded_vocab_size, |
|
bias=False, |
|
dtype=config.torch_dtype, |
|
**init_kwargs, |
|
) |
|
self.pre_seq_len = config.pre_seq_len |
|
self.prefix_projection = config.prefix_projection |
|
if self.pre_seq_len is not None: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
self.prefix_tokens = torch.arange(self.pre_seq_len).long() |
|
self.prefix_encoder = PrefixEncoder(config) |
|
self.dropout = torch.nn.Dropout(0.1) |
|
|
|
self.vision = EVA2CLIPModel(config) |
|
self.position_ids_skipped = False |
|
|
|
def get_input_embeddings(self): |
|
return self.embedding.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embedding.word_embeddings = value |
|
|
|
def get_prompt(self, batch_size, device, dtype=torch.half): |
|
prefix_tokens = ( |
|
self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) |
|
) |
|
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) |
|
past_key_values = past_key_values.view( |
|
batch_size, |
|
self.pre_seq_len, |
|
self.pre_seq_len, |
|
self.num_layers * 2, |
|
self.multi_query_group_num, |
|
self.kv_channels, |
|
) |
|
|
|
past_key_values = self.dropout(past_key_values) |
|
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) |
|
return past_key_values |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: torch.Tensor = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
full_attention_mask: Optional[torch.BoolTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
"""take care of image_encode, position_ids and (attention_mask = None is fine)""" |
|
|
|
if past_key_values is None: |
|
self.position_ids_skipped = False |
|
|
|
assert ( |
|
input_ids is not None and inputs_embeds is None |
|
), f"{input_ids} {inputs_embeds}" |
|
if not is_empty(images): |
|
image_size: int = self.config.vision_config["image_size"] |
|
patch_size: int = self.config.vision_config["patch_size"] |
|
num_patches = (image_size // patch_size // 2) ** 2 |
|
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}" |
|
|
|
inputs_embeds = self.embedding(input_ids) |
|
|
|
images = images.to(dtype=inputs_embeds.dtype) |
|
images_features = self.vision(images) |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids( |
|
input_ids, device=inputs_embeds.device |
|
) |
|
new_input_embeds, new_position_ids = [], [] |
|
|
|
for i in range(len(input_ids)): |
|
input_id = input_ids[i].tolist() |
|
boi_token_pos, eoi_token_pos = ( |
|
input_id.index(self.config.boi_token_id), |
|
input_id.index(self.config.eoi_token_id), |
|
) |
|
assert eoi_token_pos - boi_token_pos == 2 |
|
new_input_embeds.append( |
|
torch.cat( |
|
( |
|
inputs_embeds[i, :boi_token_pos], |
|
images_features[i].to(inputs_embeds.device), |
|
inputs_embeds[i, eoi_token_pos + 1 :], |
|
) |
|
) |
|
) |
|
new_position_ids.append( |
|
torch.arange( |
|
0, |
|
len(input_id) + num_patches - 1, |
|
dtype=position_ids.dtype, |
|
device=inputs_embeds.device, |
|
) |
|
) |
|
inputs_embeds = torch.stack(new_input_embeds, dim=0) |
|
position_ids = torch.stack(new_position_ids, dim=0) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embedding(input_ids) |
|
|
|
if self.pre_seq_len is not None: |
|
if past_key_values is None: |
|
past_key_values = self.get_prompt( |
|
batch_size=batch_size, |
|
device=input_ids.device, |
|
dtype=inputs_embeds.dtype, |
|
) |
|
if attention_mask is not None: |
|
attention_mask = torch.cat( |
|
[ |
|
attention_mask.new_ones((batch_size, self.pre_seq_len)), |
|
attention_mask, |
|
], |
|
dim=-1, |
|
) |
|
|
|
if full_attention_mask is None: |
|
if (attention_mask is not None and not attention_mask.all()) or ( |
|
past_key_values and seq_length != 1 |
|
): |
|
if self.training: |
|
|
|
new_input_ids, new_attention_mask = [], [] |
|
for i in range(len(input_ids)): |
|
input_id = input_ids[i].tolist() |
|
boi_token_pos, eoi_token_pos = ( |
|
input_id.index(self.config.boi_token_id), |
|
input_id.index(self.config.eoi_token_id), |
|
) |
|
assert eoi_token_pos - boi_token_pos == 2 |
|
|
|
new_attention_mask.append( |
|
torch.cat( |
|
( |
|
attention_mask[i, : boi_token_pos + 1], |
|
torch.ones(num_patches).to(attention_mask.device), |
|
attention_mask[i, eoi_token_pos:], |
|
) |
|
) |
|
) |
|
|
|
new_input_ids.append( |
|
torch.cat( |
|
( |
|
input_ids[i, : boi_token_pos + 1], |
|
input_ids[i, -1].repeat(num_patches), |
|
input_ids[i, eoi_token_pos:], |
|
) |
|
) |
|
) |
|
|
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
input_ids = torch.stack(new_input_ids, dim=0) |
|
inputs_embeds = self.embedding(input_ids) |
|
|
|
full_attention_mask = self.get_masks( |
|
inputs_embeds, past_key_values, padding_mask=attention_mask |
|
) |
|
|
|
|
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) |
|
if position_ids[0].size()[0] == 1 and not self.position_ids_skipped: |
|
self.position_ids_skipped = True |
|
position_ids[:, 0] = position_ids[:, 0] + 1600 - 1 |
|
|
|
if position_ids is not None: |
|
rotary_pos_emb = rotary_pos_emb[position_ids] |
|
else: |
|
rotary_pos_emb = rotary_pos_emb[None, :seq_length] |
|
|
|
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( |
|
inputs_embeds, |
|
full_attention_mask, |
|
rotary_pos_emb=rotary_pos_emb, |
|
kv_caches=past_key_values, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
def _history_to_prompt(history, query): |
|
prompt = "" |
|
flag = False |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += ( |
|
("<|user|>" if flag else "") |
|
+ old_query |
|
+ "<|assistant|>" |
|
+ response |
|
+ "<|endoftext|>" |
|
) |
|
flag = True |
|
prompt += "{}{}<|assistant|>".format("<|user|>" if flag else "", query) |
|
return prompt |
|
|
|
|
|
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): |
|
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
|
|
self.max_sequence_length = config.max_length |
|
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) |
|
self.config = config |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
) -> Dict[str, Any]: |
|
|
|
|
|
cache_name, cache = self._extract_past_from_model_output(outputs) |
|
model_kwargs[cache_name] = cache |
|
|
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], |
|
dim=-1, |
|
) |
|
|
|
|
|
if "position_ids" in model_kwargs: |
|
position_ids = model_kwargs["position_ids"] |
|
new_position_id = position_ids[..., -1:].clone() |
|
new_position_id += 1 |
|
model_kwargs["position_ids"] = torch.cat( |
|
[position_ids, new_position_id], dim=-1 |
|
) |
|
|
|
model_kwargs["is_first_forward"] = False |
|
return model_kwargs |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
images: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
is_first_forward: bool = True, |
|
**kwargs, |
|
) -> dict: |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
if attention_mask is not None: |
|
image_size: int = self.config.vision_config["image_size"] |
|
patch_size: int = self.config.vision_config["patch_size"] |
|
num_patches = (image_size // patch_size // 2) ** 2 |
|
new_attention_masks = [] |
|
|
|
|
|
eoi_token_pos = 6 |
|
boi_token_pos = 4 |
|
|
|
for i in range(len(input_ids)): |
|
input_id = input_ids[i].tolist() |
|
if not is_empty(images): |
|
boi_token_pos, eoi_token_pos = ( |
|
input_id.index(self.config.boi_token_id), |
|
input_id.index(self.config.eoi_token_id), |
|
) |
|
assert eoi_token_pos - boi_token_pos == 2 |
|
new_attention_masks.append( |
|
torch.cat( |
|
( |
|
attention_mask[i, : boi_token_pos + 1], |
|
attention_mask.new_ones(num_patches), |
|
attention_mask[i, eoi_token_pos:], |
|
) |
|
) |
|
) |
|
attention_mask = torch.stack(new_attention_masks, dim=0) |
|
if not is_first_forward: |
|
if past_key_values is not None: |
|
position_ids = position_ids[..., -1:] |
|
input_ids = input_ids[:, -1:] |
|
return { |
|
"input_ids": input_ids, |
|
"images": images, |
|
"past_key_values": past_key_values, |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"return_last_logit": True, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
images: List[List[torch.Tensor]] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = False, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
images=images, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
if return_last_logit: |
|
hidden_states = hidden_states[:, -1:] |
|
lm_logits = self.transformer.output_layer(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
new_labels = [] |
|
for i in range(len(input_ids)): |
|
input_id = input_ids[i].tolist() |
|
boi_token_pos, eoi_token_pos = ( |
|
input_id.index(self.config.boi_token_id), |
|
input_id.index(self.config.eoi_token_id), |
|
) |
|
assert eoi_token_pos - boi_token_pos == 2 |
|
|
|
new_labels.append( |
|
torch.cat( |
|
( |
|
labels[i, : boi_token_pos + 1], |
|
torch.tensor([-100]) |
|
.to(labels.device) |
|
.to(labels.dtype) |
|
.repeat(1600), |
|
labels[i, eoi_token_pos:], |
|
) |
|
) |
|
) |
|
|
|
labels = torch.stack(new_labels, dim=0) |
|
lm_logits = lm_logits.to(torch.float32) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
return tuple( |
|
( |
|
layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)), |
|
layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)), |
|
) |
|
for layer_past in past |
|
) |
|
|
|
|
|
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel): |
|
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) |
|
|
|
self.classifier_head = nn.Linear( |
|
config.hidden_size, config.num_labels, bias=True, dtype=torch.half |
|
) |
|
if config.classifier_dropout is not None: |
|
self.dropout = nn.Dropout(config.classifier_dropout) |
|
else: |
|
self.dropout = None |
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
full_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
full_attention_mask=full_attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
pooled_hidden_states = hidden_states[-1] |
|
if self.dropout is not None: |
|
pooled_hidden_states = self.dropout(pooled_hidden_states) |
|
logits = self.classifier_head(pooled_hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze().float(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits.float(), labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(-1, self.num_labels).float(), labels.view(-1) |
|
) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits.float(), labels.view(-1, self.num_labels)) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|