cogagent-9b-20241220 / modeling_chatglm.py
Ubuntu
test
892e231
import math
import sys
import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
from torch.nn.utils import skip_init
from typing import Optional, Tuple, Union, List, Dict, Any
import pdb
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging, is_torch_npu_available
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import (
LogitsProcessorList,
StoppingCriteriaList,
GenerationConfig,
ModelOutput,
)
from .visual import EVA2CLIPModel
from .configuration_chatglm import ChatGLMConfig
try:
from transformers.utils import (
is_flash_attn_greater_or_equal_2_10,
is_flash_attn_2_available,
)
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
except:
pass
if sys.platform != "darwin" and not is_torch_npu_available():
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
logger = logging.get_logger(__name__)
LANGUAGE_TOKEN_TYPE = 0
VISION_TOKEN_TYPE = 1
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
_CONFIG_FOR_DOC = "ChatGLMConfig"
def default_init(cls, *args, **kwargs):
return cls(*args, **kwargs)
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 198] = 5e4
return scores
class PrefixEncoder(torch.nn.Module):
"""
The torch.nn model to encode the prefix
Input shape: (batch-size, prefix-length)
Output shape: (batch-size, prefix-length, 2*layers*hidden)
"""
def __init__(self, config: ChatGLMConfig):
super().__init__()
self.prefix_projection = config.prefix_projection
if self.prefix_projection:
# Use a two-layer MLP to encode the prefix
kv_size = (
config.num_layers
* config.kv_channels
* config.multi_query_group_num
* 2
)
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
self.trans = torch.nn.Sequential(
torch.nn.Linear(kv_size, config.hidden_size),
torch.nn.Tanh(),
torch.nn.Linear(config.hidden_size, kv_size),
)
else:
self.embedding = torch.nn.Embedding(
config.pre_seq_len,
config.num_layers
* config.kv_channels
* config.multi_query_group_num
* 2,
)
def forward(self, prefix: torch.Tensor):
if self.prefix_projection:
prefix_tokens = self.embedding(prefix)
past_key_values = self.trans(prefix_tokens)
else:
past_key_values = self.embedding(prefix)
return past_key_values
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
class RotaryEmbedding(nn.Module):
def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
super().__init__()
inv_freq = 1.0 / (
10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)
)
self.register_buffer("inv_freq", inv_freq)
self.dim = dim
self.original_impl = original_impl
self.rope_ratio = rope_ratio
def impl(self, seq_length: int, dim: int, device: torch.device, dtype: torch.dtype):
base = 10000 * self.rope_ratio
inv_freq = 1.0 / (
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
)
seq = torch.arange(seq_length, device=inv_freq.device, dtype=torch.float32)
freqs = torch.outer(seq, inv_freq)
# first part even vector components, second part odd vector components,
# 2 * dim in dimension size
# emb = torch.cat((freqs, freqs), dim=-1)
# emb = torch.stack((freqs, freqs), dim=-1).to(dtype)
emb = torch.stack((freqs.cos(), freqs.sin()), dim=-1).to(dtype=dtype)
return emb
def forward_impl(
self,
seq_len: int,
n_elem: int,
dtype: torch.dtype,
device: torch.device,
base: int = 10000,
):
"""Enhanced Transformer with Rotary Position Embedding.
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
transformers/rope/__init__.py. MIT License:
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
"""
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
base = base * self.rope_ratio
theta = 1.0 / (
base
** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem)
)
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).float()
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
# this is to mimic the behaviour of complex32, else we will get different results
if dtype in (torch.float16, torch.bfloat16, torch.int8):
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
return cache
def forward(self, max_seq_len, offset=0):
if self.original_impl:
return self.forward_impl(
max_seq_len,
self.dim,
dtype=self.inv_freq.dtype,
device=self.inv_freq.device,
)
else:
return self.impl(
max_seq_len,
self.dim,
dtype=self.inv_freq.dtype,
device=self.inv_freq.device,
)
@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [b, np, sq, hn]
sq = x.size(1)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:, :sq]
xshaped = x.chunk(2, -1)
cos, sin = rope_cache[...,0].unsqueeze(2), rope_cache[...,1].unsqueeze(2)
x_out2 = torch.concat(
[
xshaped[0] * cos - xshaped[1] * sin,
xshaped[1] * cos + xshaped[0] * sin,
],
-1,
)
return torch.cat((x_out2, x_pass), dim=-1)
class RMSNorm(torch.nn.Module):
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
super().__init__()
self.weight = torch.nn.Parameter(
torch.empty(normalized_shape, device=device, dtype=dtype)
)
self.eps = eps
def forward(self, hidden_states: torch.Tensor):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return (self.weight * hidden_states).to(input_dtype)
class CoreAttention(torch.nn.Module):
def __init__(self, config: ChatGLMConfig, layer_number):
super(CoreAttention, self).__init__()
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
if self.apply_query_key_layer_scaling:
self.attention_softmax_in_fp32 = True
self.layer_number = max(1, layer_number)
projection_size = config.kv_channels * config.num_attention_heads
# Per attention head and per partition values.
self.hidden_size_per_partition = projection_size
self.hidden_size_per_attention_head = (
projection_size // config.num_attention_heads
)
self.num_attention_heads_per_partition = config.num_attention_heads
coeff = None
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
if self.apply_query_key_layer_scaling:
coeff = self.layer_number
self.norm_factor *= coeff
self.coeff = coeff
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
def forward(self, query_layer, key_layer, value_layer, attention_mask):
pytorch_major_version = int(torch.__version__.split(".")[0])
if pytorch_major_version >= 2:
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer, is_causal=True
)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer, attention_mask
)
context_layer = context_layer.transpose(1, 2).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (
self.hidden_size_per_partition,
)
context_layer = context_layer.reshape(*new_context_layer_shape)
else:
# Raw attention scores
# [b, np, sq, sk]
output_size = (
query_layer.size(0),
query_layer.size(1),
query_layer.size(2),
key_layer.size(2),
)
# [b, np, sq, hn] -> [b * np, sq, hn]
query_layer = query_layer.view(
output_size[0] * output_size[1], output_size[2], -1
)
# [b, np, sk, hn] -> [b * np, sk, hn]
key_layer = key_layer.view(
output_size[0] * output_size[1], output_size[3], -1
)
# preallocting input tensor: [b * np, sq, sk]
matmul_input_buffer = torch.empty(
output_size[0] * output_size[1],
output_size[2],
output_size[3],
dtype=query_layer.dtype,
device=query_layer.device,
)
# Raw attention scores. [b * np, sq, sk]
matmul_result = torch.baddbmm(
matmul_input_buffer,
query_layer, # [b * np, sq, hn]
key_layer.transpose(1, 2), # [b * np, hn, sk]
beta=0.0,
alpha=(1.0 / self.norm_factor),
)
# change view to [b, np, sq, sk]
attention_scores = matmul_result.view(*output_size)
# ===========================
# Attention probs and dropout
# ===========================
# attention scores and attention mask [b, np, sq, sk]
if self.attention_softmax_in_fp32:
attention_scores = attention_scores.float()
if self.coeff is not None:
attention_scores = attention_scores * self.coeff
if (
attention_mask is None
and attention_scores.shape[2] == attention_scores.shape[3]
):
attention_mask = torch.ones(
output_size[0],
1,
output_size[2],
output_size[3],
device=attention_scores.device,
dtype=torch.bool,
)
attention_mask.tril_()
attention_mask = ~attention_mask
if attention_mask is not None:
attention_scores = attention_scores.masked_fill(
attention_mask, float("-inf")
)
attention_probs = F.softmax(attention_scores, dim=-1)
attention_probs = attention_probs.type_as(value_layer)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attention_dropout(attention_probs)
# =========================
# Context layer. [sq, b, hp]
# =========================
# value_layer -> context layer.
# [sk, b, np, hn] --> [b, np, sq, hn]
# context layer shape: [b, np, sq, hn]
output_size = (
value_layer.size(1),
value_layer.size(2),
query_layer.size(0),
value_layer.size(3),
)
# change view [b * np, sk, hn]
value_layer = value_layer.view(
output_size[0] * output_size[1], value_layer.size(2), -1
)
# change view [b * np, sq, sk]
attention_probs = attention_probs.view(
output_size[0] * output_size[1], output_size[2], -1
)
# matmul: [b * np, sq, hn]
context_layer = torch.bmm(attention_probs, value_layer)
# change view [b, np, sq, hn]
context_layer = context_layer.view(*output_size)
# [b, np, sq, hn] --> [b, sq, np, hn]
context_layer = context_layer.transpose(1, 2).contiguous()
# [b, sq, np, hn] --> [b, sq, hp]
new_context_layer_shape = context_layer.size()[:-2] + (
self.hidden_size_per_partition,
)
context_layer = context_layer.reshape(*new_context_layer_shape)
return context_layer
class SdpaAttention(CoreAttention):
def forward(self, query_layer, key_layer, value_layer, attention_mask):
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
is_causal=True,
dropout_p=self.config.attention_dropout if self.training else 0.0,
)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attention_mask,
dropout_p=self.config.attention_dropout if self.training else 0.0,
)
context_layer = context_layer.transpose(1, 2).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (
self.hidden_size_per_partition,
)
context_layer = context_layer.reshape(*new_context_layer_shape)
return context_layer
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
class FlashAttention2(CoreAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(self, query_states, key_states, value_states, attention_mask):
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
batch_size, query_length = query_states.shape[:2]
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
dropout = self.config.attention_dropout if self.training else 0.0
# Contains at least one padding token in the sequence
if attention_mask is not None:
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=None,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=None,
causal=causal,
)
attn_output = attn_output.reshape(
batch_size, query_length, self.hidden_size_per_partition
).contiguous()
return attn_output
def _upad_input(
self, query_layer, key_layer, value_layer, attention_mask, query_length
):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(
batch_size * kv_seq_len,
self.num_attention_heads_per_partition,
head_dim,
),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask
)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
CORE_ATTENTION_CLASSES = {
"eager": CoreAttention,
"sdpa": SdpaAttention,
"flash_attention_2": FlashAttention2,
}
class SelfAttention(torch.nn.Module):
"""Parallel self-attention layer abstract class.
Self-attention layer takes input with size [s, b, h]
and returns output of the same size.
"""
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
super(SelfAttention, self).__init__()
self.layer_number = max(1, layer_number)
self.projection_size = config.kv_channels * config.num_attention_heads
# Per attention head and per partition values.
self.hidden_size_per_attention_head = (
self.projection_size // config.num_attention_heads
)
self.num_attention_heads_per_partition = config.num_attention_heads
self.multi_query_attention = config.multi_query_attention
self.qkv_hidden_size = 3 * self.projection_size
self.original_rope = config.original_rope
if self.multi_query_attention:
self.num_multi_query_groups_per_partition = config.multi_query_group_num
self.qkv_hidden_size = (
self.projection_size
+ 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
)
self.query_key_value = nn.Linear(
config.hidden_size,
self.qkv_hidden_size,
bias=config.add_bias_linear or config.add_qkv_bias,
device=device,
**_config_to_kwargs(config),
)
self.core_attention = CoreAttention(config, self.layer_number)
# Output.
self.dense = nn.Linear(
self.projection_size,
config.hidden_size,
bias=config.add_bias_linear,
device=device,
**_config_to_kwargs(config),
)
def _allocate_memory(
self, inference_max_sequence_len, batch_size, device=None, dtype=None
):
if self.multi_query_attention:
num_attention_heads = self.num_multi_query_groups_per_partition
else:
num_attention_heads = self.num_attention_heads_per_partition
return torch.empty(
inference_max_sequence_len,
batch_size,
num_attention_heads,
self.hidden_size_per_attention_head,
dtype=dtype,
device=device,
)
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
):
# hidden_states: [b, sq, h]
# =================================================
# Pre-allocate memory for key-values for inference.
# =================================================
# =====================
# Query, Key, and Value
# =====================
# Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition
* self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition
* self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition
* self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(
query_layer.size()[:-1]
+ (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
)
key_layer = key_layer.view(
key_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
value_layer = value_layer.view(
value_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (
self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head,
)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(
mixed_x_layer, 3
)
# apply relative positional encoding (rotary embedding)
if rotary_pos_emb is not None:
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
# [b, sq, np, hn] -> [b, np, sq, hn]
query_layer, key_layer, value_layer = [
k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]
]
# adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
key_layer = torch.cat((cache_k, key_layer), dim=2)
value_layer = torch.cat((cache_v, value_layer), dim=2)
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
if self.multi_query_attention:
key_layer = key_layer.repeat_interleave(self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, dim=1)
value_layer = value_layer.repeat_interleave(self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, dim=1)
# ==================================
# core attention computation
# ==================================
context_layer = self.core_attention(
query_layer, key_layer, value_layer, attention_mask
)
# =================
# Output. [sq, b, h]
# =================
output = self.dense(context_layer)
return output, kv_cache
def _config_to_kwargs(args):
common_kwargs = {
"dtype": args.torch_dtype,
}
return common_kwargs
class MLP(torch.nn.Module):
"""MLP.
MLP will take the input with h hidden state, project it to 4*h
hidden dimension, perform nonlinear transformation, and project the
state back into h hidden dimension.
"""
def __init__(self, config: ChatGLMConfig, device=None):
super(MLP, self).__init__()
self.add_bias = config.add_bias_linear
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
self.dense_h_to_4h = nn.Linear(
config.hidden_size,
config.ffn_hidden_size * 2,
bias=self.add_bias,
device=device,
**_config_to_kwargs(config),
)
def swiglu(x):
x = torch.chunk(x, 2, dim=-1)
return F.silu(x[0]) * x[1]
self.activation_func = swiglu
# Project back to h.
self.dense_4h_to_h = nn.Linear(
config.ffn_hidden_size,
config.hidden_size,
bias=self.add_bias,
device=device,
**_config_to_kwargs(config),
)
def forward(self, hidden_states):
# [s, b, 4hp]
intermediate_parallel = self.dense_h_to_4h(hidden_states)
intermediate_parallel = self.activation_func(intermediate_parallel)
# [s, b, h]
output = self.dense_4h_to_h(intermediate_parallel)
return output
class GLMBlock(torch.nn.Module):
"""A single transformer layer.
Transformer layer takes input with size [s, b, h] and returns an
output of the same size.
"""
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
super(GLMBlock, self).__init__()
self.layer_number = layer_number
self.apply_residual_connection_post_layernorm = (
config.apply_residual_connection_post_layernorm
)
self.fp32_residual_connection = config.fp32_residual_connection
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
# Layernorm on the input data.
self.input_layernorm = LayerNormFunc(
config.hidden_size,
eps=config.layernorm_epsilon,
device=device,
dtype=config.torch_dtype,
)
# Self attention.
self.self_attention = SelfAttention(config, layer_number, device=device)
self.hidden_dropout = config.hidden_dropout
# Layernorm on the attention output
self.post_attention_layernorm = LayerNormFunc(
config.hidden_size,
eps=config.layernorm_epsilon,
device=device,
dtype=config.torch_dtype,
)
# MLP
self.mlp = MLP(config, device=device)
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
):
# hidden_states: [s, b, h]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attention_output, kv_cache = self.self_attention(
layernorm_output,
attention_mask,
rotary_pos_emb,
kv_cache=kv_cache,
use_cache=use_cache,
)
# Residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
layernorm_input = torch.nn.functional.dropout(
attention_output, p=self.hidden_dropout, training=self.training
)
layernorm_input = residual + layernorm_input
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Second residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = layernorm_input
output = torch.nn.functional.dropout(
mlp_output, p=self.hidden_dropout, training=self.training
)
output = residual + output
return output, kv_cache
class GLMTransformer(torch.nn.Module):
"""Transformer class."""
def __init__(self, config: ChatGLMConfig, device=None):
super(GLMTransformer, self).__init__()
self.fp32_residual_connection = config.fp32_residual_connection
self.post_layer_norm = config.post_layer_norm
# Number of layers.
self.num_layers = config.num_layers
# Transformer layers.
def build_layer(layer_number):
return GLMBlock(config, layer_number, device=device)
self.layers = torch.nn.ModuleList(
[build_layer(i + 1) for i in range(self.num_layers)]
)
if self.post_layer_norm:
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
# Final layer norm before output.
self.final_layernorm = LayerNormFunc(
config.hidden_size,
eps=config.layernorm_epsilon,
device=device,
dtype=config.torch_dtype,
)
self.gradient_checkpointing = False
def _get_layer(self, layer_number):
return self.layers[layer_number]
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
):
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
for index in range(self.num_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer = self._get_layer(index)
if self.gradient_checkpointing and self.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches[index],
use_cache,
use_reentrant=False,
)
else:
layer_ret = layer(
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=kv_caches[index],
use_cache=use_cache,
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# Final layer norm.
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)
return hidden_states, presents, all_hidden_states, all_self_attentions
class ChatGLMPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
is_parallelizable = False
supports_gradient_checkpointing = True
config_class = ChatGLMConfig
base_model_prefix = "transformer"
_no_split_modules = ["GLMBlock"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
return
def get_masks(self, input_embeds, past_key_values, padding_mask=None):
batch_size, seq_length, embed_size = input_embeds.shape
full_attention_mask = torch.ones(
batch_size, seq_length, seq_length, device=input_embeds.device
)
full_attention_mask.tril_()
past_length = 0
if past_key_values:
past_length = past_key_values[0][0].shape[2]
if past_length:
full_attention_mask = torch.cat(
(
torch.ones(
batch_size, seq_length, past_length, device=input_embeds.device
),
full_attention_mask,
),
dim=-1,
)
if padding_mask is not None:
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
if not past_length and padding_mask is not None:
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
full_attention_mask = (full_attention_mask < 0.5).bool()
full_attention_mask.unsqueeze_(1)
return full_attention_mask
def get_position_ids(self, input_ids, device):
batch_size, seq_length = input_ids.shape
position_ids = (
torch.arange(seq_length, dtype=torch.long, device=device)
.unsqueeze(0)
.repeat(batch_size, 1)
)
return position_ids
def get_multimodal_position_ids(self, input_ids, device):
batch_size, seq_length = input_ids.shape
position_ids = (
torch.arange(seq_length, dtype=torch.long, device=device)
.unsqueeze(0)
.repeat(batch_size, 1)
)
class Embedding(torch.nn.Module):
"""Language model embeddings."""
def __init__(self, config: ChatGLMConfig, device=None):
super(Embedding, self).__init__()
self.hidden_size = config.hidden_size
# Word embeddings (parallel).
self.word_embeddings = nn.Embedding(
config.padded_vocab_size,
self.hidden_size,
dtype=config.torch_dtype,
device=device,
)
self.fp32_residual_connection = config.fp32_residual_connection
def forward(self, input_ids):
# Embeddings.
words_embeddings = self.word_embeddings(input_ids)
embeddings = words_embeddings
# If the input flag for fp32 residual connection is set, convert for float.
if self.fp32_residual_connection:
embeddings = embeddings.float()
return embeddings
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
if images_list is None or len(images_list) == 0:
return True
for image_list in images_list:
if image_list is not None:
return False
return True
class ChatGLMModel(ChatGLMPreTrainedModel):
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
super().__init__(config)
if empty_init:
init_method = skip_init
else:
init_method = default_init
init_kwargs = {}
if device is not None:
init_kwargs["device"] = device
self.embedding = init_method(Embedding, config, **init_kwargs)
self.num_layers = config.num_layers
self.multi_query_group_num = config.multi_query_group_num
self.kv_channels = config.kv_channels
# Rotary positional embeddings
self.seq_length = config.seq_length
rotary_dim = (
config.hidden_size // config.num_attention_heads
if config.kv_channels is None
else config.kv_channels
)
self.rotary_pos_emb = RotaryEmbedding(
rotary_dim // 2,
rope_ratio=config.rope_ratio,
original_impl=config.original_rope,
device=device,
dtype=config.torch_dtype,
)
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
self.output_layer = init_method(
nn.Linear,
config.hidden_size,
config.padded_vocab_size,
bias=False,
dtype=config.torch_dtype,
**init_kwargs,
)
self.pre_seq_len = config.pre_seq_len
self.prefix_projection = config.prefix_projection
if self.pre_seq_len is not None:
for param in self.parameters():
param.requires_grad = False
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
self.dropout = torch.nn.Dropout(0.1)
self.vision = EVA2CLIPModel(config)
self.position_ids_skipped = False
def get_input_embeddings(self):
return self.embedding.word_embeddings
def set_input_embeddings(self, value):
self.embedding.word_embeddings = value
def get_prompt(self, batch_size, device, dtype=torch.half):
prefix_tokens = (
self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
)
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.pre_seq_len,
self.num_layers * 2,
self.multi_query_group_num,
self.kv_channels,
)
# seq_len, b, nh, hidden_size
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
return past_key_values
def forward(
self,
input_ids: torch.LongTensor = None,
images: torch.Tensor = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""take care of image_encode, position_ids and (attention_mask = None is fine)"""
# generate mode with past_key_values. the image features are already mapped
if past_key_values is None:
self.position_ids_skipped = False
# not allow for inputs_embeds, because we want to process image feature
assert (
input_ids is not None and inputs_embeds is None
), f"{input_ids} {inputs_embeds}"
if not is_empty(images): # multi-modality
image_size: int = self.config.vision_config["image_size"]
patch_size: int = self.config.vision_config["patch_size"]
num_patches = (image_size // patch_size // 2) ** 2
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
inputs_embeds = self.embedding(input_ids)
images = images.to(dtype=inputs_embeds.dtype)
images_features = self.vision(images)
if position_ids is None:
position_ids = self.get_position_ids(
input_ids, device=inputs_embeds.device
)
new_input_embeds, new_position_ids = [], []
for i in range(len(input_ids)):
input_id = input_ids[i].tolist()
boi_token_pos, eoi_token_pos = (
input_id.index(self.config.boi_token_id),
input_id.index(self.config.eoi_token_id),
)
assert eoi_token_pos - boi_token_pos == 2
new_input_embeds.append(
torch.cat(
(
inputs_embeds[i, :boi_token_pos],
images_features[i].to(inputs_embeds.device),
inputs_embeds[i, eoi_token_pos + 1 :],
)
)
)
new_position_ids.append(
torch.arange(
0,
len(input_id) + num_patches - 1,
dtype=position_ids.dtype,
device=inputs_embeds.device,
)
)
inputs_embeds = torch.stack(new_input_embeds, dim=0)
position_ids = torch.stack(new_position_ids, dim=0)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(
batch_size=batch_size,
device=input_ids.device,
dtype=inputs_embeds.dtype,
)
if attention_mask is not None:
attention_mask = torch.cat(
[
attention_mask.new_ones((batch_size, self.pre_seq_len)),
attention_mask,
],
dim=-1,
)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
past_key_values and seq_length != 1
):
if self.training:
# https://github.com/THUDM/GLM-4/issues/264
new_input_ids, new_attention_mask = [], []
for i in range(len(input_ids)):
input_id = input_ids[i].tolist()
boi_token_pos, eoi_token_pos = (
input_id.index(self.config.boi_token_id),
input_id.index(self.config.eoi_token_id),
)
assert eoi_token_pos - boi_token_pos == 2
new_attention_mask.append(
torch.cat(
(
attention_mask[i, : boi_token_pos + 1],
torch.ones(num_patches).to(attention_mask.device),
attention_mask[i, eoi_token_pos:],
)
)
)
new_input_ids.append(
torch.cat(
(
input_ids[i, : boi_token_pos + 1],
input_ids[i, -1].repeat(num_patches),
input_ids[i, eoi_token_pos:],
)
)
)
attention_mask = torch.stack(new_attention_mask, dim=0)
input_ids = torch.stack(new_input_ids, dim=0)
inputs_embeds = self.embedding(input_ids)
full_attention_mask = self.get_masks(
inputs_embeds, past_key_values, padding_mask=attention_mask
)
# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids[0].size()[0] == 1 and not self.position_ids_skipped:
self.position_ids_skipped = True
position_ids[:, 0] = position_ids[:, 0] + 1600 - 1
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def _history_to_prompt(history, query):
prompt = ""
flag = False
for i, (old_query, response) in enumerate(history):
prompt += (
("<|user|>" if flag else "")
+ old_query
+ "<|assistant|>"
+ response
+ "<|endoftext|>"
)
flag = True
prompt += "{}{}<|assistant|>".format("<|user|>" if flag else "", query)
return prompt
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
super().__init__(config)
self.max_sequence_length = config.max_length
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
self.config = config
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
) -> Dict[str, Any]:
# update past_key_values
cache_name, cache = self._extract_past_from_model_output(outputs)
model_kwargs[cache_name] = cache
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))],
dim=-1,
)
# update position ids
if "position_ids" in model_kwargs:
position_ids = model_kwargs["position_ids"]
new_position_id = position_ids[..., -1:].clone()
new_position_id += 1
model_kwargs["position_ids"] = torch.cat(
[position_ids, new_position_id], dim=-1
)
model_kwargs["is_first_forward"] = False
return model_kwargs
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
images: Optional[torch.Tensor] = None,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
is_first_forward: bool = True,
**kwargs,
) -> dict:
# only last token for input_ids if past is not None
if position_ids is None:
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
if attention_mask is not None:
image_size: int = self.config.vision_config["image_size"]
patch_size: int = self.config.vision_config["patch_size"]
num_patches = (image_size // patch_size // 2) ** 2
new_attention_masks = []
# if not image, use this default id
eoi_token_pos = 6
boi_token_pos = 4
for i in range(len(input_ids)):
input_id = input_ids[i].tolist()
if not is_empty(images):
boi_token_pos, eoi_token_pos = (
input_id.index(self.config.boi_token_id),
input_id.index(self.config.eoi_token_id),
)
assert eoi_token_pos - boi_token_pos == 2
new_attention_masks.append(
torch.cat(
(
attention_mask[i, : boi_token_pos + 1],
attention_mask.new_ones(num_patches),
attention_mask[i, eoi_token_pos:],
)
)
)
attention_mask = torch.stack(new_attention_masks, dim=0)
if not is_first_forward:
if past_key_values is not None:
position_ids = position_ids[..., -1:]
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"images": images,
"past_key_values": past_key_values,
"position_ids": position_ids,
"attention_mask": attention_mask,
"return_last_logit": True,
"use_cache": use_cache,
}
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
images: List[List[torch.Tensor]] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.transformer(
input_ids=input_ids,
images=images,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[:, -1:]
lm_logits = self.transformer.output_layer(hidden_states)
loss = None
if labels is not None:
new_labels = []
for i in range(len(input_ids)):
input_id = input_ids[i].tolist()
boi_token_pos, eoi_token_pos = (
input_id.index(self.config.boi_token_id),
input_id.index(self.config.eoi_token_id),
)
assert eoi_token_pos - boi_token_pos == 2
new_labels.append(
torch.cat(
(
labels[i, : boi_token_pos + 1],
torch.tensor([-100])
.to(labels.device)
.to(labels.dtype)
.repeat(1600),
labels[i, eoi_token_pos:],
)
)
)
labels = torch.stack(new_labels, dim=0)
lm_logits = lm_logits.to(torch.float32)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
return tuple(
(
layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
)
for layer_past in past
)
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
self.classifier_head = nn.Linear(
config.hidden_size, config.num_labels, bias=True, dtype=torch.half
)
if config.classifier_dropout is not None:
self.dropout = nn.Dropout(config.classifier_dropout)
else:
self.dropout = None
self.config = config
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
full_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
full_attention_mask=full_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
pooled_hidden_states = hidden_states[-1]
if self.dropout is not None:
pooled_hidden_states = self.dropout(pooled_hidden_states)
logits = self.classifier_head(pooled_hidden_states)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze().float(), labels.squeeze())
else:
loss = loss_fct(logits.float(), labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(-1, self.num_labels).float(), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)