davidlvxin
commited on
Commit
•
a74f280
1
Parent(s):
e489903
Upload folder using huggingface_hub
Browse files- .mdl +0 -0
- .msc +0 -0
- .mv +1 -0
- config.json +37 -0
- configuration.json +1 -0
- generation_config.json +9 -0
- model-00000-of-00005.safetensors +3 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model.safetensors.index.json +298 -0
- modeling_llama.py +1255 -0
- tiktoken_tokenizer.py +160 -0
- tokenizer.tiktoken +0 -0
- tokenizer_config.json +12 -0
.mdl
ADDED
Binary file (57 Bytes). View file
|
|
.msc
ADDED
Binary file (1.11 kB). View file
|
|
.mv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Revision:master,CreatedAt:1729485048
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
|
7 |
+
},
|
8 |
+
"attention_bias": false,
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"bos_token_id": 128000,
|
11 |
+
"eos_token_id": 128001,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 14336,
|
16 |
+
"max_position_embeddings": 65536,
|
17 |
+
"mlp_bias": false,
|
18 |
+
"model_type": "llama",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": {
|
25 |
+
"factor": 8.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"high_freq_factor": 4.0,
|
28 |
+
"original_max_position_embeddings": 8192,
|
29 |
+
"rope_type": "llama3"
|
30 |
+
},
|
31 |
+
"rope_theta": 500000.0,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.43.0.dev0",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 128256
|
37 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"text-generation"}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_sample": true,
|
3 |
+
"temperature": 0.6,
|
4 |
+
"top_p": 0.9,
|
5 |
+
"_from_model_config": true,
|
6 |
+
"bos_token_id": 128000,
|
7 |
+
"eos_token_id": 128001,
|
8 |
+
"transformers_version": "4.43.0.dev0"
|
9 |
+
}
|
model-00000-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4318a4b3adec1cd2b69d61fa320a0f5b14b6a834653d04b2ef3510e1d4a9dd1
|
3 |
+
size 4362250408
|
model-00001-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27d56255405bab4141c1495010a221b209c54689957cd6ac7a100daa512e2fae
|
3 |
+
size 4362250496
|
model-00002-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9f45eea397a90c7bd6b595992cbddd4a10a085198c7255999d09168e4a7846
|
3 |
+
size 4362250496
|
model-00003-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be1d86232189cf9f2cc7acbd45b1c81a2cba63a85f227d9f35bacb180a1ccdc3
|
3 |
+
size 872450088
|
model-00004-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72bee32007c883c02a4f3a2f7756d69f7ef4489763923c1ff7d044939b7091bc
|
3 |
+
size 2101354824
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16060522496
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00004-of-00005.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
8 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
9 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
10 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
11 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
13 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
14 |
+
"model.layers.0.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
15 |
+
"model.layers.0.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
16 |
+
"model.layers.1.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
17 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
18 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
19 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
20 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
24 |
+
"model.layers.1.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
25 |
+
"model.layers.2.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
26 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
27 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
28 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
29 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
30 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
31 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
32 |
+
"model.layers.2.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
33 |
+
"model.layers.2.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
34 |
+
"model.layers.3.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
35 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
36 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
37 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
38 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
39 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
40 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
41 |
+
"model.layers.3.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
42 |
+
"model.layers.3.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
43 |
+
"model.layers.4.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
44 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
45 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
46 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
47 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
48 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
49 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
50 |
+
"model.layers.4.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
51 |
+
"model.layers.4.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
52 |
+
"model.layers.5.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
53 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
54 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
55 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
56 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
57 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
58 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
59 |
+
"model.layers.5.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
60 |
+
"model.layers.5.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
61 |
+
"model.layers.6.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
62 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
63 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
64 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
65 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
66 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
67 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
68 |
+
"model.layers.6.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
69 |
+
"model.layers.6.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
70 |
+
"model.layers.7.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
71 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
72 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
73 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
74 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
75 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
76 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
77 |
+
"model.layers.7.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
78 |
+
"model.layers.7.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
79 |
+
"model.layers.8.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
80 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
81 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
82 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
83 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
84 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
85 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
86 |
+
"model.layers.8.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
87 |
+
"model.layers.8.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
88 |
+
"model.layers.9.input_layernorm.weight": "model-00000-of-00005.safetensors",
|
89 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
|
90 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
|
91 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
|
92 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
|
93 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
|
94 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
|
95 |
+
"model.layers.9.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
|
96 |
+
"model.layers.9.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
|
97 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
98 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
99 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
100 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
101 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
102 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
103 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
104 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
105 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
106 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
107 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
108 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
109 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
110 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
111 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
112 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
113 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
114 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
115 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
116 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
117 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
118 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
119 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
120 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
121 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
122 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
123 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
124 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
125 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
126 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
127 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
128 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
129 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
130 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
131 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
132 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
133 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
134 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
135 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
136 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
137 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
138 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
139 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
140 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
141 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
142 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
143 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
144 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
145 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
146 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
147 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
148 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
149 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
150 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
151 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
152 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
153 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
154 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
155 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
156 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
157 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
158 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
159 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
160 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
161 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
162 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
163 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
164 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
165 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
166 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
167 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
168 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
169 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
170 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
171 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
172 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
173 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
174 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
175 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
176 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
177 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
178 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
179 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
180 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
181 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
182 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
183 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
184 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
185 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
186 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
187 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
188 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
189 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
190 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
191 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
192 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
193 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
194 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
195 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
196 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
197 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
198 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
199 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
200 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
201 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
202 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
203 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
204 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
205 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
206 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
207 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
208 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
209 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
210 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
211 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
212 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
213 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
214 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
215 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
216 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
217 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
218 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
219 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
220 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
221 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
222 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
223 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
224 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
225 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
226 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
227 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
228 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
229 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
230 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
231 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
232 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
234 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
236 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
237 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
238 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
239 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
240 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
241 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
242 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
243 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
244 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
245 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
246 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
247 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
248 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
249 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
250 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
251 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
253 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
255 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
256 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
257 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
258 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
260 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
261 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
262 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
263 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
265 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
266 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
267 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
268 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
269 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
270 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
271 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
272 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
273 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
276 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
277 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
278 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
279 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
280 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
281 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
282 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
283 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
284 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
285 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
286 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
287 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
289 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
291 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
292 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
293 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
294 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
295 |
+
"model.norm.weight": "model-00004-of-00005.safetensors",
|
296 |
+
"lm_head.weight": "model-00004-of-00005.safetensors"
|
297 |
+
}
|
298 |
+
}
|
modeling_llama.py
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
import math
|
21 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
31 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
32 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
33 |
+
from transformers.modeling_outputs import (
|
34 |
+
BaseModelOutputWithPast,
|
35 |
+
CausalLMOutputWithPast,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutputWithPast,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
43 |
+
from transformers.utils import (
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
is_flash_attn_greater_or_equal_2_10,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from transformers import LlamaConfig
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
55 |
+
|
56 |
+
|
57 |
+
class LlamaRMSNorm(nn.Module):
|
58 |
+
def __init__(self, hidden_size, eps=1e-6):
|
59 |
+
"""
|
60 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
61 |
+
"""
|
62 |
+
super().__init__()
|
63 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
64 |
+
self.variance_epsilon = eps
|
65 |
+
|
66 |
+
def forward(self, hidden_states):
|
67 |
+
input_dtype = hidden_states.dtype
|
68 |
+
hidden_states = hidden_states.to(torch.float32)
|
69 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
70 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
71 |
+
return self.weight * hidden_states.to(input_dtype)
|
72 |
+
|
73 |
+
|
74 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
75 |
+
|
76 |
+
|
77 |
+
class LlamaRotaryEmbedding(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
dim=None,
|
81 |
+
max_position_embeddings=2048,
|
82 |
+
base=10000,
|
83 |
+
device=None,
|
84 |
+
scaling_factor=1.0,
|
85 |
+
rope_type="default",
|
86 |
+
config: Optional[LlamaConfig] = None,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
# TODO (joao): remove the `if` below, only used for BC
|
90 |
+
self.rope_kwargs = {}
|
91 |
+
if config is None:
|
92 |
+
logger.warning_once(
|
93 |
+
"`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
94 |
+
"`config` argument. All other arguments will be removed in v4.45"
|
95 |
+
)
|
96 |
+
self.rope_kwargs = {
|
97 |
+
"rope_type": rope_type,
|
98 |
+
"factor": scaling_factor,
|
99 |
+
"dim": dim,
|
100 |
+
"base": base,
|
101 |
+
"max_position_embeddings": max_position_embeddings,
|
102 |
+
}
|
103 |
+
self.rope_type = rope_type
|
104 |
+
self.max_seq_len_cached = max_position_embeddings
|
105 |
+
self.original_max_seq_len = max_position_embeddings
|
106 |
+
else:
|
107 |
+
# BC: "rope_type" was originally "type"
|
108 |
+
if config.rope_scaling is not None:
|
109 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
110 |
+
else:
|
111 |
+
self.rope_type = "default"
|
112 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
113 |
+
self.original_max_seq_len = config.max_position_embeddings
|
114 |
+
|
115 |
+
self.config = config
|
116 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
117 |
+
|
118 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
119 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
120 |
+
self.original_inv_freq = self.inv_freq
|
121 |
+
|
122 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
123 |
+
"""
|
124 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
125 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
126 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
127 |
+
"""
|
128 |
+
seq_len = torch.max(position_ids) + 1
|
129 |
+
if seq_len > self.max_seq_len_cached: # growth
|
130 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
131 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
132 |
+
)
|
133 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
134 |
+
self.max_seq_len_cached = seq_len
|
135 |
+
|
136 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
137 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
138 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def forward(self, x, position_ids):
|
142 |
+
if "dynamic" in self.rope_type:
|
143 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
144 |
+
# Core RoPE block
|
145 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
146 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
147 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
148 |
+
device_type = x.device.type
|
149 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
150 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
151 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
152 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
153 |
+
cos = emb.cos()
|
154 |
+
sin = emb.sin()
|
155 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
156 |
+
cos = cos * self.attention_scaling
|
157 |
+
sin = sin * self.attention_scaling
|
158 |
+
|
159 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
160 |
+
|
161 |
+
|
162 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
163 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
164 |
+
|
165 |
+
def __init__(self, *args, **kwargs):
|
166 |
+
logger.warning_once(
|
167 |
+
"`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
168 |
+
"`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
169 |
+
)
|
170 |
+
kwargs["rope_type"] = "linear"
|
171 |
+
super().__init__(*args, **kwargs)
|
172 |
+
|
173 |
+
|
174 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
175 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
176 |
+
|
177 |
+
def __init__(self, *args, **kwargs):
|
178 |
+
logger.warning_once(
|
179 |
+
"`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
180 |
+
"`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
181 |
+
"__init__)."
|
182 |
+
)
|
183 |
+
kwargs["rope_type"] = "dynamic"
|
184 |
+
super().__init__(*args, **kwargs)
|
185 |
+
|
186 |
+
|
187 |
+
def rotate_half(x):
|
188 |
+
"""Rotates half the hidden dims of the input."""
|
189 |
+
x1 = x[..., : x.shape[-1] // 2]
|
190 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
191 |
+
return torch.cat((-x2, x1), dim=-1)
|
192 |
+
|
193 |
+
|
194 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
195 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
q (`torch.Tensor`): The query tensor.
|
199 |
+
k (`torch.Tensor`): The key tensor.
|
200 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
201 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
202 |
+
position_ids (`torch.Tensor`, *optional*):
|
203 |
+
Deprecated and unused.
|
204 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
205 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
206 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
207 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
208 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
209 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
210 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
211 |
+
Returns:
|
212 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
213 |
+
"""
|
214 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
215 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
216 |
+
|
217 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
218 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
219 |
+
return q_embed, k_embed
|
220 |
+
|
221 |
+
|
222 |
+
class LlamaMLP(nn.Module):
|
223 |
+
def __init__(self, config):
|
224 |
+
super().__init__()
|
225 |
+
self.config = config
|
226 |
+
self.hidden_size = config.hidden_size
|
227 |
+
self.intermediate_size = config.intermediate_size
|
228 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
229 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
230 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
231 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
if self.config.pretraining_tp > 1:
|
235 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
236 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
237 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
238 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
239 |
+
|
240 |
+
gate_proj = torch.cat(
|
241 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
242 |
+
)
|
243 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
244 |
+
|
245 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
246 |
+
down_proj = [
|
247 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
248 |
+
]
|
249 |
+
down_proj = sum(down_proj)
|
250 |
+
else:
|
251 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
252 |
+
|
253 |
+
return down_proj
|
254 |
+
|
255 |
+
|
256 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
257 |
+
"""
|
258 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
259 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
260 |
+
"""
|
261 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
262 |
+
if n_rep == 1:
|
263 |
+
return hidden_states
|
264 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
265 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
266 |
+
|
267 |
+
|
268 |
+
class LlamaAttention(nn.Module):
|
269 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
270 |
+
|
271 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
272 |
+
super().__init__()
|
273 |
+
self.config = config
|
274 |
+
self.layer_idx = layer_idx
|
275 |
+
if layer_idx is None:
|
276 |
+
logger.warning_once(
|
277 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
278 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
279 |
+
"when creating this class."
|
280 |
+
)
|
281 |
+
|
282 |
+
self.attention_dropout = config.attention_dropout
|
283 |
+
self.hidden_size = config.hidden_size
|
284 |
+
self.num_heads = config.num_attention_heads
|
285 |
+
self.head_dim = self.hidden_size // self.num_heads
|
286 |
+
self.num_key_value_heads = config.num_key_value_heads
|
287 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
288 |
+
self.max_position_embeddings = config.max_position_embeddings
|
289 |
+
self.rope_theta = config.rope_theta
|
290 |
+
self.is_causal = True
|
291 |
+
|
292 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
293 |
+
raise ValueError(
|
294 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
295 |
+
f" and `num_heads`: {self.num_heads})."
|
296 |
+
)
|
297 |
+
|
298 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
299 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
300 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
301 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
302 |
+
|
303 |
+
# TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
|
304 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.Tensor,
|
309 |
+
attention_mask: Optional[torch.Tensor] = None,
|
310 |
+
position_ids: Optional[torch.LongTensor] = None,
|
311 |
+
past_key_value: Optional[Cache] = None,
|
312 |
+
output_attentions: bool = False,
|
313 |
+
use_cache: bool = False,
|
314 |
+
cache_position: Optional[torch.LongTensor] = None,
|
315 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
316 |
+
**kwargs,
|
317 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
318 |
+
bsz, q_len, _ = hidden_states.size()
|
319 |
+
|
320 |
+
if self.config.pretraining_tp > 1:
|
321 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
322 |
+
query_slices = self.q_proj.weight.split(
|
323 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
324 |
+
)
|
325 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
326 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
327 |
+
|
328 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
329 |
+
query_states = torch.cat(query_states, dim=-1)
|
330 |
+
|
331 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
332 |
+
key_states = torch.cat(key_states, dim=-1)
|
333 |
+
|
334 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
335 |
+
value_states = torch.cat(value_states, dim=-1)
|
336 |
+
|
337 |
+
else:
|
338 |
+
query_states = self.q_proj(hidden_states)
|
339 |
+
key_states = self.k_proj(hidden_states)
|
340 |
+
value_states = self.v_proj(hidden_states)
|
341 |
+
|
342 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
343 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
344 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
345 |
+
|
346 |
+
if position_embeddings is None:
|
347 |
+
logger.warning_once(
|
348 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
349 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
350 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
351 |
+
"removed and `position_embeddings` will be mandatory."
|
352 |
+
)
|
353 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
354 |
+
else:
|
355 |
+
cos, sin = position_embeddings
|
356 |
+
|
357 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
358 |
+
|
359 |
+
if past_key_value is not None:
|
360 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
361 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
362 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
363 |
+
|
364 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
365 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
366 |
+
|
367 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
368 |
+
|
369 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
370 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
371 |
+
attn_weights = attn_weights + causal_mask
|
372 |
+
|
373 |
+
# upcast attention to fp32
|
374 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
375 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
376 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
377 |
+
|
378 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
379 |
+
raise ValueError(
|
380 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
381 |
+
f" {attn_output.size()}"
|
382 |
+
)
|
383 |
+
|
384 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
385 |
+
|
386 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
387 |
+
|
388 |
+
if self.config.pretraining_tp > 1:
|
389 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
390 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
391 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
392 |
+
else:
|
393 |
+
attn_output = self.o_proj(attn_output)
|
394 |
+
|
395 |
+
if not output_attentions:
|
396 |
+
attn_weights = None
|
397 |
+
|
398 |
+
return attn_output, attn_weights, past_key_value
|
399 |
+
|
400 |
+
|
401 |
+
class LlamaFlashAttention2(LlamaAttention):
|
402 |
+
"""
|
403 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
404 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
405 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
406 |
+
"""
|
407 |
+
|
408 |
+
def __init__(self, *args, **kwargs):
|
409 |
+
super().__init__(*args, **kwargs)
|
410 |
+
|
411 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
412 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
413 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
414 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states: torch.Tensor,
|
419 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
420 |
+
position_ids: Optional[torch.LongTensor] = None,
|
421 |
+
past_key_value: Optional[Cache] = None,
|
422 |
+
output_attentions: bool = False,
|
423 |
+
use_cache: bool = False,
|
424 |
+
cache_position: Optional[torch.LongTensor] = None,
|
425 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
426 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
427 |
+
if isinstance(past_key_value, StaticCache):
|
428 |
+
raise ValueError(
|
429 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
430 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
431 |
+
)
|
432 |
+
|
433 |
+
output_attentions = False
|
434 |
+
|
435 |
+
bsz, q_len, _ = hidden_states.size()
|
436 |
+
|
437 |
+
query_states = self.q_proj(hidden_states)
|
438 |
+
key_states = self.k_proj(hidden_states)
|
439 |
+
value_states = self.v_proj(hidden_states)
|
440 |
+
|
441 |
+
# Flash attention requires the input to have the shape
|
442 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
443 |
+
# therefore we just need to keep the original shape
|
444 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
445 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
446 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
447 |
+
|
448 |
+
if position_embeddings is None:
|
449 |
+
logger.warning_once(
|
450 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
451 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
452 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
453 |
+
"removed and `position_embeddings` will be mandatory."
|
454 |
+
)
|
455 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
456 |
+
else:
|
457 |
+
cos, sin = position_embeddings
|
458 |
+
|
459 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
460 |
+
|
461 |
+
if past_key_value is not None:
|
462 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
463 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
464 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
465 |
+
|
466 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
467 |
+
# to be able to avoid many of these transpose/reshape/view.
|
468 |
+
query_states = query_states.transpose(1, 2)
|
469 |
+
key_states = key_states.transpose(1, 2)
|
470 |
+
value_states = value_states.transpose(1, 2)
|
471 |
+
|
472 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
473 |
+
|
474 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
475 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
476 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
477 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
478 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
479 |
+
|
480 |
+
input_dtype = query_states.dtype
|
481 |
+
if input_dtype == torch.float32:
|
482 |
+
if torch.is_autocast_enabled():
|
483 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
484 |
+
# Handle the case where the model is quantized
|
485 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
486 |
+
target_dtype = self.config._pre_quantization_dtype
|
487 |
+
else:
|
488 |
+
target_dtype = self.q_proj.weight.dtype
|
489 |
+
|
490 |
+
logger.warning_once(
|
491 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
492 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
493 |
+
f" {target_dtype}."
|
494 |
+
)
|
495 |
+
|
496 |
+
query_states = query_states.to(target_dtype)
|
497 |
+
key_states = key_states.to(target_dtype)
|
498 |
+
value_states = value_states.to(target_dtype)
|
499 |
+
|
500 |
+
attn_output = _flash_attention_forward(
|
501 |
+
query_states,
|
502 |
+
key_states,
|
503 |
+
value_states,
|
504 |
+
attention_mask,
|
505 |
+
q_len,
|
506 |
+
dropout=dropout_rate,
|
507 |
+
sliding_window=getattr(self, "sliding_window", None),
|
508 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
509 |
+
is_causal=self.is_causal,
|
510 |
+
)
|
511 |
+
|
512 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
513 |
+
attn_output = self.o_proj(attn_output)
|
514 |
+
|
515 |
+
if not output_attentions:
|
516 |
+
attn_weights = None
|
517 |
+
|
518 |
+
return attn_output, attn_weights, past_key_value
|
519 |
+
|
520 |
+
|
521 |
+
class LlamaSdpaAttention(LlamaAttention):
|
522 |
+
"""
|
523 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
524 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
525 |
+
SDPA API.
|
526 |
+
"""
|
527 |
+
|
528 |
+
# Adapted from LlamaAttention.forward
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
hidden_states: torch.Tensor,
|
532 |
+
attention_mask: Optional[torch.Tensor] = None,
|
533 |
+
position_ids: Optional[torch.LongTensor] = None,
|
534 |
+
past_key_value: Optional[Cache] = None,
|
535 |
+
output_attentions: bool = False,
|
536 |
+
use_cache: bool = False,
|
537 |
+
cache_position: Optional[torch.LongTensor] = None,
|
538 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
539 |
+
**kwargs,
|
540 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
541 |
+
if output_attentions:
|
542 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
543 |
+
logger.warning_once(
|
544 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
545 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
546 |
+
)
|
547 |
+
return super().forward(
|
548 |
+
hidden_states=hidden_states,
|
549 |
+
attention_mask=attention_mask,
|
550 |
+
position_ids=position_ids,
|
551 |
+
past_key_value=past_key_value,
|
552 |
+
output_attentions=output_attentions,
|
553 |
+
use_cache=use_cache,
|
554 |
+
cache_position=cache_position,
|
555 |
+
position_embeddings=position_embeddings,
|
556 |
+
)
|
557 |
+
|
558 |
+
bsz, q_len, _ = hidden_states.size()
|
559 |
+
# print(hidden_states.sum())
|
560 |
+
query_states = self.q_proj(hidden_states)
|
561 |
+
key_states = self.k_proj(hidden_states)
|
562 |
+
value_states = self.v_proj(hidden_states)
|
563 |
+
# print(query_states.sum() + key_states.sum() + value_states.sum())
|
564 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
565 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
566 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
567 |
+
|
568 |
+
if position_embeddings is None:
|
569 |
+
logger.warning_once(
|
570 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
571 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
572 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
573 |
+
"removed and `position_embeddings` will be mandatory."
|
574 |
+
)
|
575 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
576 |
+
else:
|
577 |
+
cos, sin = position_embeddings
|
578 |
+
|
579 |
+
# print(query_states.size(), key_states.size())
|
580 |
+
# print(query_states.sum(), key_states.sum(), value_states.sum())
|
581 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
582 |
+
# print(query_states.sum(), key_states.sum())
|
583 |
+
# exit()
|
584 |
+
|
585 |
+
if past_key_value is not None:
|
586 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
587 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
588 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
589 |
+
|
590 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
591 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
592 |
+
|
593 |
+
causal_mask = attention_mask
|
594 |
+
if attention_mask is not None:
|
595 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
596 |
+
|
597 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
598 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
599 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
600 |
+
query_states = query_states.contiguous()
|
601 |
+
key_states = key_states.contiguous()
|
602 |
+
value_states = value_states.contiguous()
|
603 |
+
|
604 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
605 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
606 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
607 |
+
|
608 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
609 |
+
query_states,
|
610 |
+
key_states,
|
611 |
+
value_states,
|
612 |
+
attn_mask=causal_mask,
|
613 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
614 |
+
is_causal=is_causal,
|
615 |
+
)
|
616 |
+
|
617 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
618 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
619 |
+
|
620 |
+
attn_output = self.o_proj(attn_output)
|
621 |
+
|
622 |
+
return attn_output, None, past_key_value
|
623 |
+
|
624 |
+
|
625 |
+
LLAMA_ATTENTION_CLASSES = {
|
626 |
+
"eager": LlamaAttention,
|
627 |
+
"flash_attention_2": LlamaFlashAttention2,
|
628 |
+
"sdpa": LlamaSdpaAttention,
|
629 |
+
}
|
630 |
+
|
631 |
+
|
632 |
+
class LlamaDecoderLayer(nn.Module):
|
633 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
634 |
+
super().__init__()
|
635 |
+
self.hidden_size = config.hidden_size
|
636 |
+
|
637 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
638 |
+
self.mlp = LlamaMLP(config)
|
639 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
640 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
641 |
+
|
642 |
+
def forward(
|
643 |
+
self,
|
644 |
+
hidden_states: torch.Tensor,
|
645 |
+
attention_mask: Optional[torch.Tensor] = None,
|
646 |
+
position_ids: Optional[torch.LongTensor] = None,
|
647 |
+
past_key_value: Optional[Cache] = None,
|
648 |
+
output_attentions: Optional[bool] = False,
|
649 |
+
use_cache: Optional[bool] = False,
|
650 |
+
cache_position: Optional[torch.LongTensor] = None,
|
651 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
652 |
+
**kwargs,
|
653 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
654 |
+
"""
|
655 |
+
Args:
|
656 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
657 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
658 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
659 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
660 |
+
output_attentions (`bool`, *optional*):
|
661 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
662 |
+
returned tensors for more detail.
|
663 |
+
use_cache (`bool`, *optional*):
|
664 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
665 |
+
(see `past_key_values`).
|
666 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
667 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
668 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
669 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
670 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
671 |
+
with `head_dim` being the embedding dimension of each attention head.
|
672 |
+
kwargs (`dict`, *optional*):
|
673 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
674 |
+
into the model
|
675 |
+
"""
|
676 |
+
residual = hidden_states
|
677 |
+
# print(hidden_states.float().sum())
|
678 |
+
hidden_states = self.input_layernorm(hidden_states)
|
679 |
+
# print(hidden_states.float().sum())
|
680 |
+
|
681 |
+
# Self Attention
|
682 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
683 |
+
hidden_states=hidden_states,
|
684 |
+
attention_mask=attention_mask,
|
685 |
+
position_ids=position_ids,
|
686 |
+
past_key_value=past_key_value,
|
687 |
+
output_attentions=output_attentions,
|
688 |
+
use_cache=use_cache,
|
689 |
+
cache_position=cache_position,
|
690 |
+
position_embeddings=position_embeddings,
|
691 |
+
**kwargs,
|
692 |
+
)
|
693 |
+
hidden_states = residual + hidden_states
|
694 |
+
|
695 |
+
# Fully Connected
|
696 |
+
residual = hidden_states
|
697 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
698 |
+
hidden_states = self.mlp(hidden_states)
|
699 |
+
hidden_states = residual + hidden_states
|
700 |
+
|
701 |
+
outputs = (hidden_states,)
|
702 |
+
|
703 |
+
if output_attentions:
|
704 |
+
outputs += (self_attn_weights,)
|
705 |
+
|
706 |
+
if use_cache:
|
707 |
+
outputs += (present_key_value,)
|
708 |
+
|
709 |
+
return outputs
|
710 |
+
|
711 |
+
|
712 |
+
LLAMA_START_DOCSTRING = r"""
|
713 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
714 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
715 |
+
etc.)
|
716 |
+
|
717 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
718 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
719 |
+
and behavior.
|
720 |
+
|
721 |
+
Parameters:
|
722 |
+
config ([`LlamaConfig`]):
|
723 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
724 |
+
load the weights associated with the model, only the configuration. Check out the
|
725 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
726 |
+
"""
|
727 |
+
|
728 |
+
|
729 |
+
@add_start_docstrings(
|
730 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
731 |
+
LLAMA_START_DOCSTRING,
|
732 |
+
)
|
733 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
734 |
+
config_class = LlamaConfig
|
735 |
+
base_model_prefix = "model"
|
736 |
+
supports_gradient_checkpointing = True
|
737 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
738 |
+
_skip_keys_device_placement = ["past_key_values"]
|
739 |
+
_supports_flash_attn_2 = True
|
740 |
+
_supports_sdpa = True
|
741 |
+
_supports_cache_class = True
|
742 |
+
_supports_quantized_cache = True
|
743 |
+
_supports_static_cache = True
|
744 |
+
|
745 |
+
def _init_weights(self, module):
|
746 |
+
std = self.config.initializer_range
|
747 |
+
if isinstance(module, nn.Linear):
|
748 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
749 |
+
if module.bias is not None:
|
750 |
+
module.bias.data.zero_()
|
751 |
+
elif isinstance(module, nn.Embedding):
|
752 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
753 |
+
if module.padding_idx is not None:
|
754 |
+
module.weight.data[module.padding_idx].zero_()
|
755 |
+
|
756 |
+
|
757 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
758 |
+
Args:
|
759 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
760 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
761 |
+
it.
|
762 |
+
|
763 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
764 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
765 |
+
|
766 |
+
[What are input IDs?](../glossary#input-ids)
|
767 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
768 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
769 |
+
|
770 |
+
- 1 for tokens that are **not masked**,
|
771 |
+
- 0 for tokens that are **masked**.
|
772 |
+
|
773 |
+
[What are attention masks?](../glossary#attention-mask)
|
774 |
+
|
775 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
776 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
777 |
+
|
778 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
779 |
+
`past_key_values`).
|
780 |
+
|
781 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
782 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
783 |
+
information on the default strategy.
|
784 |
+
|
785 |
+
- 1 indicates the head is **not masked**,
|
786 |
+
- 0 indicates the head is **masked**.
|
787 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
788 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
789 |
+
config.n_positions - 1]`.
|
790 |
+
|
791 |
+
[What are position IDs?](../glossary#position-ids)
|
792 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
793 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
794 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
795 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
796 |
+
|
797 |
+
Two formats are allowed:
|
798 |
+
- a [`~cache_utils.Cache`] instance;
|
799 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
800 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
801 |
+
cache format.
|
802 |
+
|
803 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
804 |
+
legacy cache format will be returned.
|
805 |
+
|
806 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
807 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
808 |
+
of shape `(batch_size, sequence_length)`.
|
809 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
810 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
811 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
812 |
+
model's internal embedding lookup matrix.
|
813 |
+
use_cache (`bool`, *optional*):
|
814 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
815 |
+
`past_key_values`).
|
816 |
+
output_attentions (`bool`, *optional*):
|
817 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
818 |
+
tensors for more detail.
|
819 |
+
output_hidden_states (`bool`, *optional*):
|
820 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
821 |
+
more detail.
|
822 |
+
return_dict (`bool`, *optional*):
|
823 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
824 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
825 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
826 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
827 |
+
the complete sequence length.
|
828 |
+
"""
|
829 |
+
|
830 |
+
|
831 |
+
@add_start_docstrings(
|
832 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
833 |
+
LLAMA_START_DOCSTRING,
|
834 |
+
)
|
835 |
+
class LlamaModel(LlamaPreTrainedModel):
|
836 |
+
"""
|
837 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
838 |
+
|
839 |
+
Args:
|
840 |
+
config: LlamaConfig
|
841 |
+
"""
|
842 |
+
|
843 |
+
def __init__(self, config: LlamaConfig):
|
844 |
+
super().__init__(config)
|
845 |
+
self.padding_idx = config.pad_token_id
|
846 |
+
self.vocab_size = config.vocab_size
|
847 |
+
|
848 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
849 |
+
self.layers = nn.ModuleList(
|
850 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
851 |
+
)
|
852 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
853 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
854 |
+
self.gradient_checkpointing = False
|
855 |
+
|
856 |
+
# Initialize weights and apply final processing
|
857 |
+
self.post_init()
|
858 |
+
|
859 |
+
def get_input_embeddings(self):
|
860 |
+
return self.embed_tokens
|
861 |
+
|
862 |
+
def set_input_embeddings(self, value):
|
863 |
+
self.embed_tokens = value
|
864 |
+
|
865 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
866 |
+
def forward(
|
867 |
+
self,
|
868 |
+
input_ids: torch.LongTensor = None,
|
869 |
+
attention_mask: Optional[torch.Tensor] = None,
|
870 |
+
position_ids: Optional[torch.LongTensor] = None,
|
871 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
872 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
873 |
+
use_cache: Optional[bool] = None,
|
874 |
+
output_attentions: Optional[bool] = None,
|
875 |
+
output_hidden_states: Optional[bool] = None,
|
876 |
+
return_dict: Optional[bool] = None,
|
877 |
+
cache_position: Optional[torch.LongTensor] = None,
|
878 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
879 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
880 |
+
output_hidden_states = (
|
881 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
882 |
+
)
|
883 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
884 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
885 |
+
|
886 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
887 |
+
raise ValueError(
|
888 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
889 |
+
)
|
890 |
+
|
891 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
892 |
+
logger.warning_once(
|
893 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
894 |
+
)
|
895 |
+
use_cache = False
|
896 |
+
|
897 |
+
if inputs_embeds is None:
|
898 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
899 |
+
|
900 |
+
return_legacy_cache = False
|
901 |
+
if (
|
902 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
903 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
904 |
+
return_legacy_cache = True
|
905 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
906 |
+
logger.warning_once(
|
907 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
908 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
909 |
+
)
|
910 |
+
|
911 |
+
if cache_position is None:
|
912 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
913 |
+
cache_position = torch.arange(
|
914 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
915 |
+
)
|
916 |
+
if position_ids is None:
|
917 |
+
position_ids = cache_position.unsqueeze(0)
|
918 |
+
|
919 |
+
causal_mask = self._update_causal_mask(
|
920 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
921 |
+
)
|
922 |
+
hidden_states = inputs_embeds
|
923 |
+
|
924 |
+
# create position embeddings to be shared across the decoder layers
|
925 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
926 |
+
|
927 |
+
# decoder layers
|
928 |
+
all_hidden_states = () if output_hidden_states else None
|
929 |
+
all_self_attns = () if output_attentions else None
|
930 |
+
next_decoder_cache = None
|
931 |
+
|
932 |
+
for decoder_layer in self.layers:
|
933 |
+
if output_hidden_states:
|
934 |
+
all_hidden_states += (hidden_states,)
|
935 |
+
|
936 |
+
if self.gradient_checkpointing and self.training:
|
937 |
+
layer_outputs = self._gradient_checkpointing_func(
|
938 |
+
decoder_layer.__call__,
|
939 |
+
hidden_states,
|
940 |
+
causal_mask,
|
941 |
+
position_ids,
|
942 |
+
past_key_values,
|
943 |
+
output_attentions,
|
944 |
+
use_cache,
|
945 |
+
cache_position,
|
946 |
+
position_embeddings,
|
947 |
+
)
|
948 |
+
else:
|
949 |
+
layer_outputs = decoder_layer(
|
950 |
+
hidden_states,
|
951 |
+
attention_mask=causal_mask,
|
952 |
+
position_ids=position_ids,
|
953 |
+
past_key_value=past_key_values,
|
954 |
+
output_attentions=output_attentions,
|
955 |
+
use_cache=use_cache,
|
956 |
+
cache_position=cache_position,
|
957 |
+
position_embeddings=position_embeddings,
|
958 |
+
)
|
959 |
+
|
960 |
+
hidden_states = layer_outputs[0]
|
961 |
+
|
962 |
+
if use_cache:
|
963 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
964 |
+
|
965 |
+
if output_attentions:
|
966 |
+
all_self_attns += (layer_outputs[1],)
|
967 |
+
|
968 |
+
hidden_states = self.norm(hidden_states)
|
969 |
+
|
970 |
+
# add hidden states from the last decoder layer
|
971 |
+
if output_hidden_states:
|
972 |
+
all_hidden_states += (hidden_states,)
|
973 |
+
|
974 |
+
next_cache = next_decoder_cache if use_cache else None
|
975 |
+
if return_legacy_cache:
|
976 |
+
next_cache = next_cache.to_legacy_cache()
|
977 |
+
|
978 |
+
if not return_dict:
|
979 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
980 |
+
return BaseModelOutputWithPast(
|
981 |
+
last_hidden_state=hidden_states,
|
982 |
+
past_key_values=next_cache,
|
983 |
+
hidden_states=all_hidden_states,
|
984 |
+
attentions=all_self_attns,
|
985 |
+
)
|
986 |
+
|
987 |
+
def _update_causal_mask(
|
988 |
+
self,
|
989 |
+
attention_mask: torch.Tensor,
|
990 |
+
input_tensor: torch.Tensor,
|
991 |
+
cache_position: torch.Tensor,
|
992 |
+
past_key_values: Cache,
|
993 |
+
output_attentions: bool,
|
994 |
+
):
|
995 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
996 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
997 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
998 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
999 |
+
|
1000 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1001 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1002 |
+
return attention_mask
|
1003 |
+
return None
|
1004 |
+
|
1005 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1006 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1007 |
+
# to infer the attention mask.
|
1008 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1009 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1010 |
+
|
1011 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1012 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1013 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1014 |
+
attention_mask,
|
1015 |
+
inputs_embeds=input_tensor,
|
1016 |
+
past_key_values_length=past_seen_tokens,
|
1017 |
+
is_training=self.training,
|
1018 |
+
):
|
1019 |
+
return None
|
1020 |
+
|
1021 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1022 |
+
min_dtype = torch.finfo(dtype).min
|
1023 |
+
sequence_length = input_tensor.shape[1]
|
1024 |
+
if using_static_cache:
|
1025 |
+
target_length = past_key_values.get_max_length()
|
1026 |
+
else:
|
1027 |
+
target_length = (
|
1028 |
+
attention_mask.shape[-1]
|
1029 |
+
if isinstance(attention_mask, torch.Tensor)
|
1030 |
+
else past_seen_tokens + sequence_length + 1
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1034 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1035 |
+
if attention_mask.max() != 0:
|
1036 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
1037 |
+
causal_mask = attention_mask
|
1038 |
+
else:
|
1039 |
+
causal_mask = torch.full(
|
1040 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1041 |
+
)
|
1042 |
+
if sequence_length != 1:
|
1043 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1044 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1045 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1046 |
+
if attention_mask is not None:
|
1047 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1048 |
+
mask_length = attention_mask.shape[-1]
|
1049 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1050 |
+
padding_mask = padding_mask == 0
|
1051 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1052 |
+
padding_mask, min_dtype
|
1053 |
+
)
|
1054 |
+
if (
|
1055 |
+
self.config._attn_implementation == "sdpa"
|
1056 |
+
and attention_mask is not None
|
1057 |
+
and attention_mask.device.type == "cuda"
|
1058 |
+
and not output_attentions
|
1059 |
+
):
|
1060 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1061 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1062 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1063 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1064 |
+
|
1065 |
+
return causal_mask
|
1066 |
+
|
1067 |
+
|
1068 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
1069 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1070 |
+
|
1071 |
+
def __init__(self, config):
|
1072 |
+
super().__init__(config)
|
1073 |
+
self.model = LlamaModel(config)
|
1074 |
+
self.vocab_size = config.vocab_size
|
1075 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1076 |
+
|
1077 |
+
# Initialize weights and apply final processing
|
1078 |
+
self.post_init()
|
1079 |
+
|
1080 |
+
def get_input_embeddings(self):
|
1081 |
+
return self.model.embed_tokens
|
1082 |
+
|
1083 |
+
def set_input_embeddings(self, value):
|
1084 |
+
self.model.embed_tokens = value
|
1085 |
+
|
1086 |
+
def get_output_embeddings(self):
|
1087 |
+
return self.lm_head
|
1088 |
+
|
1089 |
+
def set_output_embeddings(self, new_embeddings):
|
1090 |
+
self.lm_head = new_embeddings
|
1091 |
+
|
1092 |
+
def set_decoder(self, decoder):
|
1093 |
+
self.model = decoder
|
1094 |
+
|
1095 |
+
def get_decoder(self):
|
1096 |
+
return self.model
|
1097 |
+
|
1098 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1099 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1100 |
+
def forward(
|
1101 |
+
self,
|
1102 |
+
input_ids: torch.LongTensor = None,
|
1103 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1104 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1105 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1106 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1107 |
+
labels: Optional[torch.LongTensor] = None,
|
1108 |
+
use_cache: Optional[bool] = None,
|
1109 |
+
output_attentions: Optional[bool] = None,
|
1110 |
+
output_hidden_states: Optional[bool] = None,
|
1111 |
+
return_dict: Optional[bool] = None,
|
1112 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1113 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1114 |
+
r"""
|
1115 |
+
Args:
|
1116 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1117 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1118 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1119 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1120 |
+
|
1121 |
+
Returns:
|
1122 |
+
|
1123 |
+
Example:
|
1124 |
+
|
1125 |
+
```python
|
1126 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1127 |
+
|
1128 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1129 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1130 |
+
|
1131 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1132 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1133 |
+
|
1134 |
+
>>> # Generate
|
1135 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1136 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1137 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1138 |
+
```"""
|
1139 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1140 |
+
output_hidden_states = (
|
1141 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1142 |
+
)
|
1143 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1144 |
+
|
1145 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1146 |
+
outputs = self.model(
|
1147 |
+
input_ids=input_ids,
|
1148 |
+
attention_mask=attention_mask,
|
1149 |
+
position_ids=position_ids,
|
1150 |
+
past_key_values=past_key_values,
|
1151 |
+
inputs_embeds=inputs_embeds,
|
1152 |
+
use_cache=use_cache,
|
1153 |
+
output_attentions=output_attentions,
|
1154 |
+
output_hidden_states=output_hidden_states,
|
1155 |
+
return_dict=return_dict,
|
1156 |
+
cache_position=cache_position,
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
hidden_states = outputs[0]
|
1160 |
+
if self.config.pretraining_tp > 1:
|
1161 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1162 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1163 |
+
logits = torch.cat(logits, dim=-1)
|
1164 |
+
else:
|
1165 |
+
logits = self.lm_head(hidden_states)
|
1166 |
+
logits = logits.float()
|
1167 |
+
|
1168 |
+
loss = None
|
1169 |
+
if labels is not None:
|
1170 |
+
# Shift so that tokens < n predict n
|
1171 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1172 |
+
shift_labels = labels[..., 1:].contiguous()
|
1173 |
+
# Flatten the tokens
|
1174 |
+
loss_fct = CrossEntropyLoss()
|
1175 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1176 |
+
shift_labels = shift_labels.view(-1)
|
1177 |
+
# Enable model parallelism
|
1178 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1179 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1180 |
+
|
1181 |
+
if not return_dict:
|
1182 |
+
output = (logits,) + outputs[1:]
|
1183 |
+
return (loss,) + output if loss is not None else output
|
1184 |
+
|
1185 |
+
return CausalLMOutputWithPast(
|
1186 |
+
loss=loss,
|
1187 |
+
logits=logits,
|
1188 |
+
past_key_values=outputs.past_key_values,
|
1189 |
+
hidden_states=outputs.hidden_states,
|
1190 |
+
attentions=outputs.attentions,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
def prepare_inputs_for_generation(
|
1194 |
+
self,
|
1195 |
+
input_ids,
|
1196 |
+
past_key_values=None,
|
1197 |
+
attention_mask=None,
|
1198 |
+
inputs_embeds=None,
|
1199 |
+
cache_position=None,
|
1200 |
+
position_ids=None,
|
1201 |
+
use_cache=True,
|
1202 |
+
**kwargs,
|
1203 |
+
):
|
1204 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1205 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1206 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1207 |
+
if past_key_values is not None:
|
1208 |
+
if inputs_embeds is not None: # Exception 1
|
1209 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1210 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1211 |
+
input_ids = input_ids[:, cache_position]
|
1212 |
+
|
1213 |
+
if attention_mask is not None and position_ids is None:
|
1214 |
+
# create position_ids on the fly for batch generation
|
1215 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1216 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1217 |
+
if past_key_values:
|
1218 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1219 |
+
|
1220 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1221 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1222 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1223 |
+
else:
|
1224 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
1225 |
+
|
1226 |
+
model_inputs.update(
|
1227 |
+
{
|
1228 |
+
"position_ids": position_ids,
|
1229 |
+
"cache_position": cache_position,
|
1230 |
+
"past_key_values": past_key_values,
|
1231 |
+
"use_cache": use_cache,
|
1232 |
+
"attention_mask": attention_mask,
|
1233 |
+
}
|
1234 |
+
)
|
1235 |
+
return model_inputs
|
1236 |
+
|
1237 |
+
@torch.inference_mode()
|
1238 |
+
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
1239 |
+
max_length: int = 65536, num_beams=1, do_sample=True, top_p=0.7, temperature=0.95,
|
1240 |
+
**kwargs):
|
1241 |
+
if history is None:
|
1242 |
+
history = []
|
1243 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1244 |
+
"temperature": temperature, **kwargs}
|
1245 |
+
inputs = tokenizer.build_chat_input(query, history=history, role=role)
|
1246 |
+
del inputs['token_type_ids']
|
1247 |
+
# print(inputs)
|
1248 |
+
inputs = inputs.to(self.device)
|
1249 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
|
1250 |
+
tokenizer.get_command("<|observation|>")]
|
1251 |
+
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
1252 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1253 |
+
response = tokenizer.decode(outputs).strip()
|
1254 |
+
history.append({"role": role, "content": query})
|
1255 |
+
return response, history
|
tiktoken_tokenizer.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import regex as re
|
2 |
+
import base64
|
3 |
+
import tiktoken
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
|
8 |
+
class BaseTokenizer(PreTrainedTokenizer):
|
9 |
+
"""Abstract class for tokenizer."""
|
10 |
+
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
@property
|
15 |
+
def add_prefix_space(self):
|
16 |
+
return False
|
17 |
+
|
18 |
+
@property
|
19 |
+
def vocab_size(self):
|
20 |
+
raise NotImplemented
|
21 |
+
|
22 |
+
def tokenize(self, text):
|
23 |
+
raise NotImplemented
|
24 |
+
|
25 |
+
def detokenize(self, token_ids, ignore_special_tokens=True):
|
26 |
+
raise NotImplemented
|
27 |
+
|
28 |
+
def build_single_message(self, role, metadata, message):
|
29 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
30 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
31 |
+
message_tokens = self.tokenizer.encode(message, disallowed_special=())
|
32 |
+
tokens = role_tokens + message_tokens
|
33 |
+
return tokens
|
34 |
+
|
35 |
+
def build_chat_input(self, query, history=None, role="user", metadata=""):
|
36 |
+
if history is None:
|
37 |
+
history = []
|
38 |
+
input_ids = []
|
39 |
+
for item in history:
|
40 |
+
content = item["content"]
|
41 |
+
if item["role"] == "system" and "tools" in item:
|
42 |
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
43 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
44 |
+
input_ids.extend(self.build_single_message(role, metadata, query))
|
45 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
46 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
47 |
+
|
48 |
+
@property
|
49 |
+
def eos_id(self):
|
50 |
+
raise NotImplemented
|
51 |
+
|
52 |
+
def get_command(self, token):
|
53 |
+
return NotImplemented
|
54 |
+
|
55 |
+
class TikTokenizer(BaseTokenizer):
|
56 |
+
vocab_files_names = {"vocab_file": "tokenizer.tiktoken"}
|
57 |
+
|
58 |
+
def __init__(self, vocab_file, **kwargs):
|
59 |
+
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
60 |
+
self.pat_str = re.compile(pat_str)
|
61 |
+
|
62 |
+
self.b64_vocab = {}
|
63 |
+
mergeable_ranks = {}
|
64 |
+
with open(vocab_file) as f:
|
65 |
+
for line in f:
|
66 |
+
token, rank = line.strip().split()
|
67 |
+
rank = int(rank)
|
68 |
+
token = base64.b64decode(token)
|
69 |
+
mergeable_ranks[token] = rank
|
70 |
+
self.b64_vocab['%s' % token] = rank
|
71 |
+
|
72 |
+
self.special_tokens = ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
|
73 |
+
"<|user|>", "<|assistant|>", "<|observation|>"]
|
74 |
+
self.special_tokens = {
|
75 |
+
token: idx for idx, token in enumerate(self.special_tokens, start=len(mergeable_ranks))
|
76 |
+
}
|
77 |
+
self.special_token_ids = {idx: token for token, idx in self.special_tokens.items()}
|
78 |
+
|
79 |
+
self.tokenizer = tiktoken.Encoding(
|
80 |
+
name="my_tokenizer",
|
81 |
+
pat_str=pat_str,
|
82 |
+
mergeable_ranks=mergeable_ranks,
|
83 |
+
special_tokens=self.special_tokens
|
84 |
+
)
|
85 |
+
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
|
86 |
+
self.n_words = len(self.decoder) + len(self.special_tokens)
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
@property
|
90 |
+
def add_prefix_space(self):
|
91 |
+
return False
|
92 |
+
|
93 |
+
def tokenize(self, text, add_special_tokens=True):
|
94 |
+
ids = self.encode(text, add_special_tokens=add_special_tokens)
|
95 |
+
return [self.convert_id_to_token(_id) for _id in ids]
|
96 |
+
|
97 |
+
def detokenize(self, ids, ignore_special_tokens=True):
|
98 |
+
if ignore_special_tokens:
|
99 |
+
ids = [idx for idx in ids if idx not in self.special_token_ids]
|
100 |
+
return self.tokenizer.decode(ids)
|
101 |
+
|
102 |
+
def encode(self, text, add_special_tokens=True):
|
103 |
+
ids = self.tokenizer.encode(text, disallowed_special=(), allowed_special="all")
|
104 |
+
if add_special_tokens:
|
105 |
+
ids = [self.special_tokens["[gMASK]"], self.special_tokens["<sop>"]] + ids
|
106 |
+
return ids
|
107 |
+
|
108 |
+
def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
|
109 |
+
if type(ids) is int:
|
110 |
+
ids = [ids]
|
111 |
+
return self.detokenize(ids, ignore_special_tokens=skip_special_tokens)
|
112 |
+
|
113 |
+
def encode_pieces(self, text):
|
114 |
+
ids = self.tokenizer.encode(text, disallowed_special=())
|
115 |
+
return list(map(lambda x: self.decoder[x].detokenize('utf-8', errors='replace'), ids))
|
116 |
+
|
117 |
+
@property
|
118 |
+
def vocab_size(self):
|
119 |
+
return self.n_words
|
120 |
+
|
121 |
+
@property
|
122 |
+
def eos_token_id(self):
|
123 |
+
return self.special_tokens["<|endoftext|>"]
|
124 |
+
|
125 |
+
def convert_token_to_id(self, token):
|
126 |
+
""" Converts a token (str) in an id using the vocab. """
|
127 |
+
if token in self.special_tokens:
|
128 |
+
return self.special_tokens[token]
|
129 |
+
# assert type(token) == str, "type of token (%s) is %s" % (token, type(token))
|
130 |
+
# ids = self.tokenizer.encode(token, disallowed_special=())
|
131 |
+
if token in self.b64_vocab:
|
132 |
+
return self.b64_vocab[token]
|
133 |
+
# if len(ids) == 1:
|
134 |
+
# return ids[0]
|
135 |
+
else:
|
136 |
+
raise RuntimeError(f"{token} is not a single token")
|
137 |
+
|
138 |
+
def _convert_token_to_id(self, token):
|
139 |
+
return self.convert_token_to_id(token)
|
140 |
+
|
141 |
+
def convert_id_to_token(self, index):
|
142 |
+
if index in self.special_token_ids:
|
143 |
+
return self.special_token_ids[index]
|
144 |
+
return '%s' % self.decoder[index]
|
145 |
+
# try:
|
146 |
+
# return self.decoder[index].decode('utf-8')
|
147 |
+
# except Exception as e:
|
148 |
+
# print("Exception: %s for (%d)%s" % (e, index, self.decoder[index]))
|
149 |
+
# return ""
|
150 |
+
#return self.decoder[index].detokenize('utf-8', errors='replace')
|
151 |
+
|
152 |
+
def _convert_id_to_token(self, index):
|
153 |
+
return self.convert_id_to_token(index)
|
154 |
+
|
155 |
+
def get_command(self, token):
|
156 |
+
return self.special_tokens[token]
|
157 |
+
|
158 |
+
def get_vocab(self):
|
159 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
160 |
+
return vocab
|
tokenizer.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "THUDM/chatglm4-130b",
|
3 |
+
"remove_space": false,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"tokenizer_class": "TikTokenizer",
|
6 |
+
"auto_map": {
|
7 |
+
"AutoTokenizer": [
|
8 |
+
null,
|
9 |
+
"tiktoken_tokenizer.TikTokenizer"
|
10 |
+
]
|
11 |
+
}
|
12 |
+
}
|