zR
commited on
Commit
·
a190ef4
1
Parent(s):
33b90ca
test
Browse files- README.md +41 -23
- README_zh.md +32 -16
README.md
CHANGED
@@ -37,33 +37,34 @@ The table below provides a list of the video generation models we currently offe
|
|
37 |
<th style="text-align: center;">CogVideoX-5B (Current Repository)</th>
|
38 |
</tr>
|
39 |
<tr>
|
40 |
-
<td style="text-align: center;">Model
|
41 |
-
<td style="text-align: center;">
|
42 |
-
<td style="text-align: center;">A larger model
|
43 |
</tr>
|
44 |
<tr>
|
45 |
<td style="text-align: center;">Inference Precision</td>
|
46 |
-
<td style="text-align: center;">FP16, FP32
|
47 |
-
<td style="text-align: center;">BF16, FP32
|
48 |
</tr>
|
49 |
<tr>
|
50 |
-
<td style="text-align: center;">Inference Speed<br>(
|
51 |
-
<td style="text-align: center;">FP16: ~90 s</td>
|
52 |
-
<td style="text-align: center;">BF16: ~200 s</td>
|
53 |
</tr>
|
54 |
<tr>
|
55 |
-
<td style="text-align: center;">Single GPU
|
56 |
-
<td style="text-align: center;">18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br>12GB
|
57 |
-
<td style="text-align: center;">26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br>21GB
|
58 |
</tr>
|
59 |
<tr>
|
60 |
-
<td style="text-align: center;">Multi-GPU Inference Memory
|
61 |
-
<td
|
|
|
62 |
</tr>
|
63 |
<tr>
|
64 |
-
<td style="text-align: center;">Fine-
|
65 |
-
<td style="text-align: center;">47 GB (bs=1, LORA)<br>
|
66 |
-
<td style="text-align: center;">63 GB (bs=1, LORA)<br>
|
67 |
</tr>
|
68 |
<tr>
|
69 |
<td style="text-align: center;">Prompt Language</td>
|
@@ -79,15 +80,33 @@ The table below provides a list of the video generation models we currently offe
|
|
79 |
</tr>
|
80 |
<tr>
|
81 |
<td style="text-align: center;">Frame Rate</td>
|
82 |
-
<td colspan="2" style="text-align: center;">8 frames
|
83 |
</tr>
|
84 |
<tr>
|
85 |
<td style="text-align: center;">Video Resolution</td>
|
86 |
<td colspan="2" style="text-align: center;">720 x 480, does not support other resolutions (including fine-tuning)</td>
|
87 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
88 |
</table>
|
89 |
|
90 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
## Quick Start 🤗
|
93 |
|
@@ -137,8 +156,6 @@ video = pipe(
|
|
137 |
export_to_video(video, "output.mp4", fps=8)
|
138 |
```
|
139 |
|
140 |
-
**Using a single A100 GPU, generating a video with the above configuration takes approximately 200 seconds**
|
141 |
-
|
142 |
If the generated model appears “all green” and not viewable in the default MAC player, it is a normal phenomenon (due to
|
143 |
OpenCV saving video issues). Simply use a different player to view the video.
|
144 |
|
@@ -160,8 +177,9 @@ This model is released under the [CogVideoX LICENSE](LICENSE).
|
|
160 |
|
161 |
```
|
162 |
@article{yang2024cogvideox,
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
166 |
}
|
167 |
```
|
|
|
37 |
<th style="text-align: center;">CogVideoX-5B (Current Repository)</th>
|
38 |
</tr>
|
39 |
<tr>
|
40 |
+
<td style="text-align: center;">Model Introduction</td>
|
41 |
+
<td style="text-align: center;">An entry-level model with good compatibility. Low cost for running and secondary development.</td>
|
42 |
+
<td style="text-align: center;">A larger model with higher video generation quality and better visual effects.</td>
|
43 |
</tr>
|
44 |
<tr>
|
45 |
<td style="text-align: center;">Inference Precision</td>
|
46 |
+
<td style="text-align: center;">FP16, FP32<br><b>NOT support BF16</b> </td>
|
47 |
+
<td style="text-align: center;">BF16, FP32<br><b>NOT support FP16</b> </td>
|
48 |
</tr>
|
49 |
<tr>
|
50 |
+
<td style="text-align: center;">Inference Speed<br>(Step = 50)</td>
|
51 |
+
<td style="text-align: center;">FP16: ~90* s</td>
|
52 |
+
<td style="text-align: center;">BF16: ~200* s</td>
|
53 |
</tr>
|
54 |
<tr>
|
55 |
+
<td style="text-align: center;">Single GPU Memory Consumption</td>
|
56 |
+
<td style="text-align: center;">18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br><b>12GB* using diffusers</b><br></td>
|
57 |
+
<td style="text-align: center;">26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br><b>21GB* using diffusers</b><br></td>
|
58 |
</tr>
|
59 |
<tr>
|
60 |
+
<td style="text-align: center;">Multi-GPU Inference Memory Consumption</td>
|
61 |
+
<td style="text-align: center;"><b>10GB* using diffusers</b><br></td>
|
62 |
+
<td style="text-align: center;"><b>15GB* using diffusers</b><br></td>
|
63 |
</tr>
|
64 |
<tr>
|
65 |
+
<td style="text-align: center;">Fine-Tuning Memory Consumption (Per GPU)</td>
|
66 |
+
<td style="text-align: center;">47 GB (bs=1, LORA)<br>61 GB (bs=2, LORA)<br>62GB (bs=1, SFT)</td>
|
67 |
+
<td style="text-align: center;">63 GB (bs=1, LORA)<br>80 GB (bs=2, LORA)<br>75GB (bs=1, SFT)<br></td>
|
68 |
</tr>
|
69 |
<tr>
|
70 |
<td style="text-align: center;">Prompt Language</td>
|
|
|
80 |
</tr>
|
81 |
<tr>
|
82 |
<td style="text-align: center;">Frame Rate</td>
|
83 |
+
<td colspan="2" style="text-align: center;">8 frames per second</td>
|
84 |
</tr>
|
85 |
<tr>
|
86 |
<td style="text-align: center;">Video Resolution</td>
|
87 |
<td colspan="2" style="text-align: center;">720 x 480, does not support other resolutions (including fine-tuning)</td>
|
88 |
</tr>
|
89 |
+
<tr>
|
90 |
+
<td style="text-align: center;">Positional Encoding</td>
|
91 |
+
<td style="text-align: center;">3d_sincos_pos_embed</td>
|
92 |
+
<td style="text-align: center;">3d_rope_pos_embed<br></td>
|
93 |
+
</tr>
|
94 |
</table>
|
95 |
|
96 |
+
**Data Explanation**
|
97 |
+
|
98 |
+
+ When testing with the diffusers library, the `enable_model_cpu_offload()` and `pipe.vae.enable_tiling()` options were
|
99 |
+
enabled. This configuration was not tested on non-**NVIDIA A100 / H100** devices, but it should generally work on all
|
100 |
+
**NVIDIA Ampere architecture** and above. Disabling these optimizations will significantly increase memory usage, with
|
101 |
+
peak usage approximately 3 times the values shown in the table.
|
102 |
+
+ For multi-GPU inference, `enable_model_cpu_offload()` must be disabled.
|
103 |
+
+ Inference speed tests used the above memory optimization options. Without these optimizations, inference speed
|
104 |
+
increases by around 10%.
|
105 |
+
+ The model supports only English input. For other languages, translation to English is recommended during large model
|
106 |
+
processing.
|
107 |
+
|
108 |
+
+ **Note** Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version
|
109 |
+
models. Feel free to visit our GitHub for more information.
|
110 |
|
111 |
## Quick Start 🤗
|
112 |
|
|
|
156 |
export_to_video(video, "output.mp4", fps=8)
|
157 |
```
|
158 |
|
|
|
|
|
159 |
If the generated model appears “all green” and not viewable in the default MAC player, it is a normal phenomenon (due to
|
160 |
OpenCV saving video issues). Simply use a different player to view the video.
|
161 |
|
|
|
177 |
|
178 |
```
|
179 |
@article{yang2024cogvideox,
|
180 |
+
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
|
181 |
+
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
|
182 |
+
journal={arXiv preprint arXiv:2408.06072},
|
183 |
+
year={2024}
|
184 |
}
|
185 |
```
|
README_zh.md
CHANGED
@@ -29,22 +29,23 @@ CogVideoX是 [清影](https://chatglm.cn/video) 同源的开源版本视频生
|
|
29 |
</tr>
|
30 |
<tr>
|
31 |
<td style="text-align: center;">推理精度</td>
|
32 |
-
<td style="text-align: center;">FP16, FP32
|
33 |
-
<td style="text-align: center;">BF16, FP32
|
34 |
</tr>
|
35 |
<tr>
|
36 |
-
<td style="text-align: center;">推理速度<br>(
|
37 |
-
<td style="text-align: center;">FP16: ~90 s</td>
|
38 |
-
<td style="text-align: center;">BF16: ~200 s</td>
|
39 |
</tr>
|
40 |
<tr>
|
41 |
-
<td style="text-align: center;">单GPU
|
42 |
-
<td style="text-align: center;">18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br>12GB
|
43 |
-
<td style="text-align: center;">26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br>21GB
|
44 |
</tr>
|
45 |
<tr>
|
46 |
<td style="text-align: center;">多GPU推理显存消耗</td>
|
47 |
-
<td
|
|
|
48 |
</tr>
|
49 |
<tr>
|
50 |
<td style="text-align: center;">微调显存消耗(每卡)</td>
|
@@ -61,7 +62,7 @@ CogVideoX是 [清影](https://chatglm.cn/video) 同源的开源版本视频生
|
|
61 |
</tr>
|
62 |
<tr>
|
63 |
<td style="text-align: center;">视频长度</td>
|
64 |
-
<td colspan="2" style="text-align: center;">6
|
65 |
</tr>
|
66 |
<tr>
|
67 |
<td style="text-align: center;">帧率</td>
|
@@ -71,9 +72,25 @@ CogVideoX是 [清影](https://chatglm.cn/video) 同源的开源版本视频生
|
|
71 |
<td style="text-align: center;">视频分辨率</td>
|
72 |
<td colspan="2" style="text-align: center;">720 * 480,不支持其他分辨率(含微调)</td>
|
73 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
74 |
</table>
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
## 快速上手 🤗
|
79 |
|
@@ -122,8 +139,6 @@ video = pipe(
|
|
122 |
export_to_video(video, "output.mp4", fps=8)
|
123 |
```
|
124 |
|
125 |
-
**使用单卡A100按照上述配置生成一次视频大约需要200秒**。
|
126 |
-
|
127 |
如果您生成的模型在 MAC 默认播放器上表现为 "全绿" 无法正常观看,属于正常现象 (OpenCV保存视频问题),仅需更换一个播放器观看。
|
128 |
|
129 |
## 深入研究
|
@@ -144,8 +159,9 @@ export_to_video(video, "output.mp4", fps=8)
|
|
144 |
|
145 |
```
|
146 |
@article{yang2024cogvideox,
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
}
|
151 |
```
|
|
|
29 |
</tr>
|
30 |
<tr>
|
31 |
<td style="text-align: center;">推理精度</td>
|
32 |
+
<td style="text-align: center;">FP16, FP32<br><b>不支持 BF16</b> </td>
|
33 |
+
<td style="text-align: center;">BF16, FP32<br><b>不支持 FP16</b> </td>
|
34 |
</tr>
|
35 |
<tr>
|
36 |
+
<td style="text-align: center;">推理速度<br>(Step = 50)</td>
|
37 |
+
<td style="text-align: center;">FP16: ~90* s</td>
|
38 |
+
<td style="text-align: center;">BF16: ~200* s</td>
|
39 |
</tr>
|
40 |
<tr>
|
41 |
+
<td style="text-align: center;">单GPU显存消耗<br></td>
|
42 |
+
<td style="text-align: center;">18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br><b>12GB* using diffusers</b><br></td>
|
43 |
+
<td style="text-align: center;">26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a><br><b>21GB* using diffusers</b><br></td>
|
44 |
</tr>
|
45 |
<tr>
|
46 |
<td style="text-align: center;">多GPU推理显存消耗</td>
|
47 |
+
<td style="text-align: center;"><b>10GB* using diffusers</b><br></td>
|
48 |
+
<td style="text-align: center;"><b>15GB* using diffusers</b><br></td>
|
49 |
</tr>
|
50 |
<tr>
|
51 |
<td style="text-align: center;">微调显存消耗(每卡)</td>
|
|
|
62 |
</tr>
|
63 |
<tr>
|
64 |
<td style="text-align: center;">视频长度</td>
|
65 |
+
<td colspan="2" style="text-align: center;">6 秒</td>
|
66 |
</tr>
|
67 |
<tr>
|
68 |
<td style="text-align: center;">帧率</td>
|
|
|
72 |
<td style="text-align: center;">视频分辨率</td>
|
73 |
<td colspan="2" style="text-align: center;">720 * 480,不支持其他分辨率(含微调)</td>
|
74 |
</tr>
|
75 |
+
<tr>
|
76 |
+
<td style="text-align: center;">位置编码</td>
|
77 |
+
<td style="text-align: center;">3d_sincos_pos_embed</td>
|
78 |
+
<td style="text-align: center;">3d_rope_pos_embed<br></td>
|
79 |
+
</tr>
|
80 |
</table>
|
81 |
|
82 |
+
**数据解释**
|
83 |
+
|
84 |
+
+ 使用 diffusers 库进行测试时,启用了 `enable_model_cpu_offload()` 选项 和 `pipe.vae.enable_tiling()` 优化,该方案未测试在非
|
85 |
+
**NVIDIA A100 / H100** 外的实际显存占用,通常,该方案可以适配于所有 **NVIDIA 安培架构**
|
86 |
+
以上的设备。若关闭优化,显存占用会成倍增加,峰值显存约为表格的3倍。
|
87 |
+
+ 多GPU推理时,需要关闭 `enable_model_cpu_offload()` 优化。
|
88 |
+
+ 推理速度测试同样采用了上述显存优化方案,不采用显存优化的情况下,推理速度提升约10%。
|
89 |
+
+ 模型仅支持英语输入,其他语言可以通过大模型润色时翻译为英语。
|
90 |
+
|
91 |
+
**提醒**
|
92 |
+
|
93 |
+
+ 使用 [SAT](https://github.com/THUDM/SwissArmyTransformer) 推理和微调SAT版本模型。欢迎前往我们的github查看。
|
94 |
|
95 |
## 快速上手 🤗
|
96 |
|
|
|
139 |
export_to_video(video, "output.mp4", fps=8)
|
140 |
```
|
141 |
|
|
|
|
|
142 |
如果您生成的模型在 MAC 默认播放器上表现为 "全绿" 无法正常观看,属于正常现象 (OpenCV保存视频问题),仅需更换一个播放器观看。
|
143 |
|
144 |
## 深入研究
|
|
|
159 |
|
160 |
```
|
161 |
@article{yang2024cogvideox,
|
162 |
+
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
|
163 |
+
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
|
164 |
+
journal={arXiv preprint arXiv:2408.06072},
|
165 |
+
year={2024}
|
166 |
}
|
167 |
```
|