Update README.md
Browse files
README.md
CHANGED
@@ -1,48 +1,49 @@
|
|
1 |
-
---
|
2 |
-
license: llama2
|
3 |
-
datasets:
|
4 |
-
- ACE05
|
5 |
-
- conll2003
|
6 |
-
- conll2012_ontonotesv5
|
7 |
-
- rams
|
8 |
-
- tacred
|
9 |
-
- fewrel
|
10 |
-
- maven
|
11 |
-
language:
|
12 |
-
- en
|
13 |
-
metrics:
|
14 |
-
- f1
|
15 |
-
pipeline_tag: text-generation
|
16 |
-
tags:
|
17 |
-
- text-generation-inference
|
18 |
-
- Information Extraction
|
19 |
-
- IE
|
20 |
-
- Named Entity Recogniton
|
21 |
-
- Event Extraction
|
22 |
-
- Relation Extraction
|
23 |
-
- LLaMA
|
24 |
-
---
|
25 |
-
|
26 |
-
# Model Card for ADELIE-SFT
|
27 |
-
|
28 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
29 |
-
|
30 |
-
<p align="justify">
|
31 |
-
We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
|
32 |
-
|
33 |
-
- ๐ Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
|
34 |
-
</p>
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
- **
|
45 |
-
- **
|
46 |
-
- **
|
47 |
-
- **
|
48 |
-
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
datasets:
|
4 |
+
- ACE05
|
5 |
+
- conll2003
|
6 |
+
- conll2012_ontonotesv5
|
7 |
+
- rams
|
8 |
+
- tacred
|
9 |
+
- fewrel
|
10 |
+
- maven
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
metrics:
|
14 |
+
- f1
|
15 |
+
pipeline_tag: text-generation
|
16 |
+
tags:
|
17 |
+
- text-generation-inference
|
18 |
+
- Information Extraction
|
19 |
+
- IE
|
20 |
+
- Named Entity Recogniton
|
21 |
+
- Event Extraction
|
22 |
+
- Relation Extraction
|
23 |
+
- LLaMA
|
24 |
+
---
|
25 |
+
|
26 |
+
# Model Card for ADELIE-SFT
|
27 |
+
|
28 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
29 |
+
|
30 |
+
<p align="justify">
|
31 |
+
We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
|
32 |
+
|
33 |
+
- ๐ Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
|
34 |
+
</p>
|
35 |
+
- ๐ง github: [THU/ADELIE](https://github.com/THU-KEG/ADELIE/tree/main)
|
36 |
+
|
37 |
+
|
38 |
+
### Model Description
|
39 |
+
|
40 |
+
<!-- Provide a longer summary of what this model is. -->
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
- **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
|
45 |
+
- **Model type:** Text Generation
|
46 |
+
- **Language(s) (NLP):** English
|
47 |
+
- **License:** LLaMA2 License for the base model.
|
48 |
+
- **Finetuned from model [optional]:** LLaMA2-7B
|
49 |
+
|