Kikkk commited on
Commit
6fb0e66
โ€ข
1 Parent(s): 91a1142

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -48
README.md CHANGED
@@ -1,48 +1,49 @@
1
- ---
2
- license: llama2
3
- datasets:
4
- - ACE05
5
- - conll2003
6
- - conll2012_ontonotesv5
7
- - rams
8
- - tacred
9
- - fewrel
10
- - maven
11
- language:
12
- - en
13
- metrics:
14
- - f1
15
- pipeline_tag: text-generation
16
- tags:
17
- - text-generation-inference
18
- - Information Extraction
19
- - IE
20
- - Named Entity Recogniton
21
- - Event Extraction
22
- - Relation Extraction
23
- - LLaMA
24
- ---
25
-
26
- # Model Card for ADELIE-SFT
27
-
28
- <!-- Provide a quick summary of what the model is/does. -->
29
-
30
- <p align="justify">
31
- We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
32
-
33
- - ๐Ÿ“– Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
34
- </p>
35
-
36
-
37
- ### Model Description
38
-
39
- <!-- Provide a longer summary of what this model is. -->
40
-
41
-
42
-
43
- - **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
44
- - **Model type:** Text Generation
45
- - **Language(s) (NLP):** English
46
- - **License:** LLaMA2 License for the base model.
47
- - **Finetuned from model [optional]:** LLaMA2-7B
48
-
 
 
1
+ ---
2
+ license: llama2
3
+ datasets:
4
+ - ACE05
5
+ - conll2003
6
+ - conll2012_ontonotesv5
7
+ - rams
8
+ - tacred
9
+ - fewrel
10
+ - maven
11
+ language:
12
+ - en
13
+ metrics:
14
+ - f1
15
+ pipeline_tag: text-generation
16
+ tags:
17
+ - text-generation-inference
18
+ - Information Extraction
19
+ - IE
20
+ - Named Entity Recogniton
21
+ - Event Extraction
22
+ - Relation Extraction
23
+ - LLaMA
24
+ ---
25
+
26
+ # Model Card for ADELIE-SFT
27
+
28
+ <!-- Provide a quick summary of what the model is/does. -->
29
+
30
+ <p align="justify">
31
+ We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
32
+
33
+ - ๐Ÿ“– Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
34
+ </p>
35
+ - ๐Ÿง github: [THU/ADELIE](https://github.com/THU-KEG/ADELIE/tree/main)
36
+
37
+
38
+ ### Model Description
39
+
40
+ <!-- Provide a longer summary of what this model is. -->
41
+
42
+
43
+
44
+ - **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
45
+ - **Model type:** Text Generation
46
+ - **Language(s) (NLP):** English
47
+ - **License:** LLaMA2 License for the base model.
48
+ - **Finetuned from model [optional]:** LLaMA2-7B
49
+