Kikkk commited on
Commit
458dfa8
·
verified ·
1 Parent(s): cd5cd34

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ datasets:
4
+ - ACE05
5
+ - conll2003
6
+ - conll2012_ontonotesv5
7
+ - rams
8
+ - tacred
9
+ - fewrel
10
+ - maven
11
+ language:
12
+ - en
13
+ metrics:
14
+ - f1
15
+ pipeline_tag: text-generation
16
+ tags:
17
+ - text-generation-inference
18
+ - Information Extraction
19
+ - IE
20
+ - Named Entity Recogniton
21
+ - Event Extraction
22
+ - Relation Extraction
23
+ - LLaMA
24
+ ---
25
+
26
+ # Model Card for ADELIE-SFT-3B
27
+
28
+ <!-- Provide a quick summary of what the model is/does. -->
29
+
30
+ <p align="justify">
31
+ We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
32
+
33
+ - 📖 Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
34
+ </p>
35
+ - 🐧 Github: [THU/ADELIE](https://github.com/THU-KEG/ADELIE/tree/main)
36
+
37
+
38
+ # Model Performance
39
+
40
+ The table below presents the average F1 scores (%) of the ADELIE model across closed IE, open IE, and on-demand IE tasks, as well as its overall performance (%) on general benchmarks. For dataset details, please refer to the paper.
41
+
42
+ | Model | Closed IE | Open IE | On-demand IE | General Average Score |
43
+ |-----------------|-----------|---------|--------------|-----------------------|
44
+ | Llama2 7B | 5.7 | 5.6 | 22.4 | 52.2 |
45
+ | ADELIE-SFT | 42.6 | 46.9 | 60.4 | 53.5 |
46
+ | ADELIE-DPO | **42.7** | **47.6** | **60.5** | **53.8** |
47
+ |-----------------|-----------|---------|--------------|-----------------------|
48
+ | Llama3.2 3B | 19.1 | 18.5 | 20.8 | 55.5 |
49
+ | ADELIE-SFT-3B | **41.8** | 47.6 | **60.8** | **55.6** |
50
+ | ADELIE-DPO-3B | 39.2 | **47.8** | 60.7 | **55.6** |
51
+ |-----------------|-----------|---------|--------------|-----------------------|
52
+ | Qwen2.5 1.5B | 16.5 | 14.2 | 20.5 | 54.6 |
53
+ | ADELIE-SFT-1.5B | 37.7 | 44.6 | 58.9 | 55.0 |
54
+ | ADELIE-DPO-1.5B | **38.5** | **45.6** | **59.2** | **55.1** |
55
+
56
+
57
+
58
+ ### Model Description
59
+
60
+ <!-- Provide a longer summary of what this model is. -->
61
+
62
+
63
+
64
+ - **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
65
+ - **Model type:** Text Generation
66
+ - **Language(s) (NLP):** English
67
+ - **License:** LLaMA2 License for the base model.
68
+ - **Finetuned from model [optional]:** LLaMA3.2-3B
69
+