T-Nishida commited on
Commit
7a2c452
1 Parent(s): 16203ef

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -20,10 +20,10 @@ model-index:
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.925
24
  - name: F1
25
  type: f1
26
- value: 0.9250380285284041
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,9 +33,9 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.2123
37
- - Accuracy: 0.925
38
- - F1: 0.9250
39
 
40
  ## Model description
41
 
@@ -66,13 +66,13 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
- | 0.8347 | 1.0 | 250 | 0.3061 | 0.9085 | 0.9054 |
70
- | 0.242 | 2.0 | 500 | 0.2123 | 0.925 | 0.9250 |
71
 
72
 
73
  ### Framework versions
74
 
75
  - Transformers 4.16.2
76
  - Pytorch 2.0.1+cu118
77
- - Datasets 2.13.0
78
  - Tokenizers 0.13.3
 
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
+ value: 0.9205
24
  - name: F1
25
  type: f1
26
+ value: 0.9206019254208612
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2320
37
+ - Accuracy: 0.9205
38
+ - F1: 0.9206
39
 
40
  ## Model description
41
 
 
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
+ | 0.8454 | 1.0 | 250 | 0.3371 | 0.9025 | 0.8990 |
70
+ | 0.2626 | 2.0 | 500 | 0.2320 | 0.9205 | 0.9206 |
71
 
72
 
73
  ### Framework versions
74
 
75
  - Transformers 4.16.2
76
  - Pytorch 2.0.1+cu118
77
+ - Datasets 2.13.1
78
  - Tokenizers 0.13.3