ppo-LunarLander-v2 / config.json
T-Brockhouse's picture
Moin Meister
cb47198
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e282c896dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e282c896e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e282c896ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e282c896f80>", "_build": "<function ActorCriticPolicy._build at 0x7e282c897010>", "forward": "<function ActorCriticPolicy.forward at 0x7e282c8970a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e282c897130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e282c8971c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e282c897250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e282c8972e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e282c897370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e282c897400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e282c82d9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697989126801538823, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANp+gD3h4Jq6vgQHOJdUyDKnVww54ukbtwAAgD8AAIA/ZrTBPLHOGz6i2bQ9dVQ7vsnzZj2qfQ28AAAAAAAAAABmvrw7CrI0uyaOvrpxtIo8S16CvKhdbz0AAIA/AACAP/NxRb44kA4/9LKHPld5YL72gf68I2xGPAAAAAAAAAAAhb6NvoDG/D4Ek50+6q/Zvc5jaj0OMGo9AAAAAAAAAABNIM49ezrnuksQ4by/OQ493i1Tuutd8D0AAIA/AACAP2bOyLyjHLg+qC19uyF8ML7oFYI8PLqbvAAAAAAAAAAAmomuPez+/7viZqq8LdgGPVdsO7w7sVs6AACAPwAAAACzCkY9j9MMvC3GKDzmER09uz5zvcX7/T0AAIA/AACAP2aJtj2PPm66thqau53MVDgcxZo6kmliOAAAgD8AAAAAzQx4O+FUirqTREeyJgAfKkkyjDqzfd2yAACAPwAAgD/ambU9k5WxPxXChD6RjKy+itHTPYYJbDwAAAAAAAAAAAbvVj5hJei8MLE2PJtZw7o+Ik2+It+UuwAAgD8AAIA/WtGnPb4npj8W2W4+6QGxvrAf8z348OM9AAAAAAAAAACaofQ8kgdxP6h0Qj1bgp++d9ZuPEJ42jwAAAAAAAAAAHOfiz3DuXK8DKsEvJtGm7xNUM499rN7PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEoG79Q40dmMAWyUS/CMAXSUR0Cb7MhDgIhRdX2UKGgGR0Bm1s/MW43FaAdN6ANoCEdAm+zKEOAiFHV9lChoBkdAbusF0xM362gHTYQBaAhHQJvuwjSofjl1fZQoaAZHQGp8EwevIOpoB01nAmgIR0Cb7w7fpD/mdX2UKGgGR0BwU9q/M4cWaAdNlAFoCEdAm/CPx+az/3V9lChoBkdAcWajASFoMGgHTYUBaAhHQJvwp7laKUF1fZQoaAZHQGzbbbL2YfJoB02BAWgIR0Cb85SZjQRgdX2UKGgGR0BvRwsVclgMaAdNOwFoCEdAm/YGS+xnnXV9lChoBkdAbcKQtBfKIWgHTT4BaAhHQJv2S9zwMH91fZQoaAZHQHHXoHkcS5BoB00+AmgIR0Cb9l2v0RODdX2UKGgGR0BvLjDjzZpSaAdNIQJoCEdAm/h0gbIcR3V9lChoBkdAPs+zt1IRRWgHTQYBaAhHQJwKAFB6a9d1fZQoaAZHQGGvDLKV6eJoB03oA2gIR0CcCif6GgzydX2UKGgGR0Bv8grxy4nXaAdNwQFoCEdAnAqTJdSl33V9lChoBkfAEjzTnaFmF2gHTR4BaAhHQJwMk9mpVCJ1fZQoaAZHQGy/RAbADaJoB01uAmgIR0CcDydT5wfhdX2UKGgGR0ByCCyprDZUaAdNPQFoCEdAnA+vnjhky3V9lChoBkdAcV09Q40dimgHTWoCaAhHQJwP+nKnvUl1fZQoaAZHQHB+Oa8YhuBoB02VAWgIR0CcEED6WPcSdX2UKGgGR0BtSKTMaCL/aAdNlAFoCEdAnBIBTXJ5mnV9lChoBkdAbPw72criEWgHTUkBaAhHQJwSvmlqJuV1fZQoaAZHQGoYf0dzXBhoB02lAWgIR0CcFGAv+OwQdX2UKGgGR0Bx4pc7hegMaAdNMQFoCEdAnBd9iUgSvnV9lChoBkdAcDSJrLyMDWgHTYEBaAhHQJwZbfhuO0d1fZQoaAZHQG/jfN7jT8ZoB01VAWgIR0CcGsQCCBf8dX2UKGgGR0A2ABomG/N8aAdNIgFoCEdAnBtkYwZflnV9lChoBkdAcngdOZb6g2gHTV8BaAhHQJwbg1n/T9d1fZQoaAZHQFzqiCJ40MxoB03oA2gIR0CcG6kWykbhdX2UKGgGR0Bwlm66J66baAdNwwFoCEdAnBzCJXQtz3V9lChoBkdAcDGG1hLGrGgHTY8BaAhHQJweaNIbwSd1fZQoaAZHQHIuFdonKGNoB03iAWgIR0CcHpntv4ucdX2UKGgGR0Bw3UEcKgIyaAdNUgFoCEdAnCCFnIyTIXV9lChoBkdAcINt+kP+XWgHTUEBaAhHQJwg4BeXzDp1fZQoaAZHQHCfYIv8IiVoB01gAWgIR0CcJJtuDSPVdX2UKGgGR0Bxufv7WNFSaAdNrwFoCEdAnCXwEt/WlXV9lChoBkdAbdoHrQgLZ2gHTU4BaAhHQJwmNZX+2mZ1fZQoaAZHQHG7RYJVsDZoB012AWgIR0CcJsN47ihndX2UKGgGR0Bu9sSZjQRgaAdNxAFoCEdAnCdTOC5Et3V9lChoBkdAcbt1h9b5dmgHTUsBaAhHQJwpsJb+tKZ1fZQoaAZHQHGYYtUXHipoB01uAWgIR0CcKeI55qubdX2UKGgGR0BxzrmCAc1gaAdNRQFoCEdAnCrOM2m52HV9lChoBkdAb3i+s5n14GgHTVwBaAhHQJwrkfozN2V1fZQoaAZHQHBnj5CWu5loB013AWgIR0CcLCn4fwI/dX2UKGgGR0By/yVt4zJqaAdNcwFoCEdAnCyWJzkp7XV9lChoBkdAbFJODaoMrmgHTVQBaAhHQJwtcv+OwPl1fZQoaAZHQG/QnhS9/SZoB02YAWgIR0CcLo5RCQcQdX2UKGgGR0Bu+Px2B8QaaAdNTwFoCEdAnC756Uqx1XV9lChoBkdAbMVkCmuTzWgHTV0BaAhHQJwvN5Sm65J1fZQoaAZHQHIphMWXTmZoB02lAWgIR0CcMCoc7yQQdX2UKGgGR0Bwvo6fapPzaAdNSwFoCEdAnDJeqNp/PXV9lChoBkdAceyuVX3g1mgHTWgBaAhHQJwyX/HYHxB1fZQoaAZHQGs31OsT37FoB01bAWgIR0CcM9z8P4EfdX2UKGgGR0BvGEJng5zYaAdNcQFoCEdAnDREDMeOn3V9lChoBkdAay+x9G7SRmgHTZwBaAhHQJw1TQ9ic5N1fZQoaAZHQHEARiobXH1oB01FAWgIR0CcNodvbXYldX2UKGgGR0Bv7m/JvHcUaAdNjQFoCEdAnEkS17Y023V9lChoBkdAbQ1Z4fOlf2gHTaIBaAhHQJxKIKa5PM11fZQoaAZHQHCLGwJPZZloB02HAWgIR0CcSuqlxffGdX2UKGgGR0Bt/oKv3ai9aAdNcgFoCEdAnEsxX0XgtXV9lChoBkdAcMKju8brC2gHTYYBaAhHQJxLgfPomol1fZQoaAZHQHE5nanJkoZoB01OAWgIR0CcS/ptrKvFdX2UKGgGR0ByStouf29MaAdNeQFoCEdAnExJ5AyEc3V9lChoBkdAcA6Zm7J4jmgHTUgBaAhHQJxMc6eXiR51fZQoaAZHQHIxtUbT+ehoB01nAWgIR0CcTSZG8VYZdX2UKGgGR0BykcTAWSEEaAdNXQFoCEdAnE4ROtW+5HV9lChoBkdAb4nRzBAOa2gHTT0BaAhHQJxO/Z7HAAR1fZQoaAZHQGt1bVrhzeZoB01MAWgIR0CcT3g4ffXPdX2UKGgGR0BwDpZTyauwaAdNQQFoCEdAnFDXPJJXhnV9lChoBkdAcS7AVfu1GGgHTVABaAhHQJxRCokzGgl1fZQoaAZHwCnQTsY2sJZoB00tAWgIR0CcVM6FuejEdX2UKGgGR0Bx/guscQyzaAdNbAFoCEdAnFYBdUsFuHV9lChoBkdAb/rSDRMN+mgHTZUBaAhHQJxWoiNbTtt1fZQoaAZHQG1eRN7BwddoB01dAWgIR0CcWQIjW07bdX2UKGgGR0BwWvvnbItEaAdNSgFoCEdAnFkOPBBRh3V9lChoBkdAbOe7V8Ti82gHTT0BaAhHQJxZKoOx0Mh1fZQoaAZHQG3ZK9f1HvtoB00/AWgIR0CcWfitq59WdX2UKGgGR0Bxj9uQ6p5vaAdNPgFoCEdAnFpwctGutHV9lChoBkdAbpANzbN8mmgHTUABaAhHQJxb/JRwZO11fZQoaAZHQHBnbYbsF+xoB01oAWgIR0CcXNlAeJYUdX2UKGgGR0BwBBB0IToMaAdNXAFoCEdAnF8AhfShJ3V9lChoBkdAbwNLdvbXYmgHTUoBaAhHQJxgeYD1XeZ1fZQoaAZHQHCsTP8hs69oB01qAWgIR0CcYW1oQFs6dX2UKGgGR0BwQU7o0Q9SaAdNNAFoCEdAnGGekHlfZ3V9lChoBkdAbSHm16Vt42gHTeoBaAhHQJxiCfNA1Nx1fZQoaAZHQHBHQ/5ckdFoB015AWgIR0CcZSdBjWkKdX2UKGgGR0BvTvRRdhRZaAdNRQFoCEdAnGZu/QBxP3V9lChoBkdAOX+I2wV0tGgHS+RoCEdAnGfkmhM8HXV9lChoBkdAbkgKO1fE42gHTXgBaAhHQJxpmjtXxON1fZQoaAZHQHEyJdSl3yJoB01uAWgIR0CcaaHqu8sddX2UKGgGR0BwOIH0K7ZnaAdNSQFoCEdAnGnPA0sOG3V9lChoBkdAbR4s7uDzy2gHTUYBaAhHQJxpy4e9zwN1fZQoaAZHQG+gf8dgfEJoB005AWgIR0CcaedtEXtTdX2UKGgGR0BuazOzIFNdaAdNUQFoCEdAnGoPRRdhRnV9lChoBkdAcQUadtl7MWgHTU0BaAhHQJxsKDyvs7d1fZQoaAZHQEsttNzr/sFoB00dAWgIR0CcbVKK508vdX2UKGgGR0BsBPjCHh0haAdNTQFoCEdAnG2Hpjc2znV9lChoBkdAcoWSIgvDg2gHTU8BaAhHQJxvMkcCHRF1fZQoaAZHQHIkWmHgxahoB01jAWgIR0CccFDSPU8WdX2UKGgGR0BwGuW1MM7VaAdNaQFoCEdAnHMkEcKgI3V9lChoBkdAbYUqSX+l02gHTU4BaAhHQJxzJf7aZhN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}