huDeBERTa-MLSM-v2 / configuration_deberta.py
berendg's picture
Upload DebertaForMaskedLM
4277e38 verified
raw
history blame
8.73 kB
# coding=utf-8
# Copyright 2020, Microsoft and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DeBERTa model configuration"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
if TYPE_CHECKING:
from transformers import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
logger = logging.get_logger(__name__)
class DebertaConfiguration(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
[microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
relative_attention (`bool`, *optional*, defaults to `False`):
Whether use relative position encoding.
max_relative_positions (`int`, *optional*, defaults to 1):
The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
as `max_position_embeddings`.
pad_token_id (`int`, *optional*, defaults to 0):
The value used to pad input_ids.
position_biased_input (`bool`, *optional*, defaults to `True`):
Whether add absolute position embedding to content embedding.
pos_att_type (`List[str]`, *optional*):
The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
`["p2c", "c2p"]`.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import DebertaConfig, DebertaModel
>>> # Initializing a DeBERTa microsoft/deberta-base style configuration
>>> configuration = DebertaConfig()
>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
>>> model = DebertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "deberta"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=0,
initializer_range=0.02,
layer_norm_eps=1e-7,
relative_attention=False,
max_relative_positions=-1,
pad_token_id=0,
position_biased_input=True,
pos_att_type=None,
pooler_dropout=0,
pooler_hidden_act="gelu",
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.relative_attention = relative_attention
self.max_relative_positions = max_relative_positions
self.pad_token_id = pad_token_id
self.position_biased_input = position_biased_input
# Backwards compatibility
if isinstance(pos_att_type, str):
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
self.pos_att_type = pos_att_type
self.vocab_size = vocab_size
self.layer_norm_eps = layer_norm_eps
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
self.pooler_dropout = pooler_dropout
self.pooler_hidden_act = pooler_hidden_act
# Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig
class DebertaOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
)
else:
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
@property
def default_onnx_opset(self) -> int:
return 12
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional["TensorType"] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
tokenizer: "PreTrainedTokenizerBase" = None,
) -> Mapping[str, Any]:
dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs