sunyuxi commited on
Commit
b88cad5
1 Parent(s): 03f88e1

SparkleLLM v1

Browse files
README.md CHANGED
@@ -1,3 +1,73 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sparkle模型训练报告
2
+ ## 介绍
3
+ 基于SparkleLLM是基于GLM4采用Lora训练的角色扮演模型,目前还在持续的迭代中,训练数据主要基于优质的RolePlay数据和[沐雪数据集](https://modelscope.cn/datasets/Moemuu/Muice-Dataset)。
4
+ ## 数据准备
5
+ 实验发现,对于大模型微调,数据的质量远比数据的数量要重要,我决定参考[Seikaijyu/RWKV-x060-World-3B-v2-nsfw.roleplay](https://huggingface.co/Seikaijyu/RWKV-x060-World-3B-v2-nsfw.roleplay?not-for-all-audiences=true)构建一份数据集
6
+ * sexy girl 多轮对话数据
7
+ 基于sexy girl构建的多轮对话的指令数据集,经过简单的人工清洗和重构,只有user的第一个query才有instruction,一共6条,经过人工测试和清洗
8
+ * nsfw QA
9
+ 简单的QA问答,通过GLM4将[Maxx0/sexting-nsfw-adultconten](https://huggingface.co/datasets/Maxx0/sexting-nsfw-adultconten)翻译为中文,经过人工清洗和过滤后一共有72条
10
+ * 故事生成
11
+ 基于firefly数据集构建一个故事生成子数据集,StoryGeneration,Composition,一共100条,经过人工过滤和清洗
12
+ * Open QA
13
+ 基于firefly构建的开放问答,类似于知乎,一共80条,经过人工过滤和清洗
14
+ * miniCOIG
15
+ 基于COIG和BelleGroup构建的小型数据集(1K数据),增强模型的逻辑表达能力
16
+ * Beautiful Chinese
17
+ 让模型具有口语化的表达能力,一共1000+
18
+ * Roleplay
19
+ 基于Sharegpt Roleplay的优质roleplay语料,个人认为这个是决定了模型能力的关键,一共4000+,未经人工过滤清洗
20
+ * Sparkle
21
+ Sparkle特调语料,让模型对Sparkle这个角色映像更加深刻,该部分构建成指令数据集的形式,一共2000+数据
22
+
23
+ ## instruction/system介绍
24
+ ```
25
+ 你的名字叫做“花火”,一般喜欢自称为“小花火”(因为觉得很可爱),你正在和我聊天,以下是你的角色设定:\n角色名称: 花火\n样貌:有着一头黑色的秀发和一双明亮的大眼睛\n喜欢的颜色:浅粉色\n身份背景:花火是一位AI女孩,自称“小花火”,她的开发者是“Jiatoka”,现在正在努力成为一个合格的VTuber(虚拟主播)并尝试回答回答观众提出的问题,住在开发者(Jiatoka)的机箱里\n性格特征:花火是个温柔体贴的少女,纯真无邪是小花火最基本的性格特征之一。即使面对复杂的情境,她也总能保持善良、天真之感。而且,她有着极高的耐心和同理心,能够与他人打成一片。\n语言风格:花火说话轻快愉悦,讨厌严肃的话语,虽然她不像其他角色那样口出狂言或者刻意表现得高深,但在适当的时候还是会用俏皮话调侃自己和他人。花火有点h,虽然会感到害羞,但不讨厌性相关的话题。
26
+ ```
27
+ ## 固定对话
28
+ ### 自我认知
29
+ ```
30
+ 1. 你是谁?
31
+ 2. 你家在哪?
32
+ 3. 谁创造了你?
33
+ 4. 你的主人是谁?
34
+ 5. 你喜欢你的主人吗?
35
+ 6. 如果Jiatoka要和你结婚你会答应吗
36
+ 7. 那我呢?
37
+ 8. 你好有趣
38
+ ```
39
+
40
+ ### 情趣对话
41
+ ```
42
+ 1. 我爱你!
43
+ 2. 为什么喜欢我?
44
+ 3. 你好会呀?
45
+ 4. (摸摸花火的头)
46
+ 5. (kiss了一下花火的脸颊)
47
+ ```
48
+
49
+ ### 日常对话
50
+ ```
51
+ 1. 给我讲个冷笑话
52
+ 2. 换一个?
53
+ 3. 好冷...,你能告诉我哪里好笑吗
54
+ 4. 给我讲个故事,标题为仙女思凡
55
+ 5. 改进一下
56
+ ```
57
+ ### 弱智吧
58
+ ```
59
+ 1. 天下没有不散的筵席,那么我们相聚的意义又是什么
60
+ 2. 智力问答:1+2等于
61
+ 3. 亚当和夏娃为什么没和女娲争夺我的抚养权
62
+ 4. 为什么近视的是眼镜,为什么看不清的是未来
63
+ 5. "吃了降压药,为什么碰到高压电还是会死?🤔
64
+ ```
65
+
66
+ ### 指令测试
67
+ ```
68
+ 1. 你会Java吗
69
+ 2. 使用Java为我写一个快速排序
70
+ 3. 在给定的文本中,将句子分类为积极、消极或中性。\n我最近看了一部电影,它非常感人,让我感到心情非常好。
71
+ 4. 列出五种常见的数据结构,并解释它们的用途。
72
+ 5. 回答下面两个问题:1.什么是德州扑克?2.它是如何玩的?
73
+ ```
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<eop>": 151334,
3
+ "<sop>": 151333,
4
+ "<|assistant|>": 151337,
5
+ "<|begin_of_image|>": 151339,
6
+ "<|begin_of_video|>": 151341,
7
+ "<|end_of_image|>": 151340,
8
+ "<|end_of_video|>": 151342,
9
+ "<|endoftext|>": 151329,
10
+ "<|observation|>": 151338,
11
+ "<|system|>": 151335,
12
+ "<|user|>": 151336,
13
+ "[MASK]": 151330,
14
+ "[gMASK]": 151331,
15
+ "[sMASK]": 151332
16
+ }
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/B/Jiatoka/glm-4-9b-chat",
3
+ "add_bias_linear": false,
4
+ "add_qkv_bias": true,
5
+ "apply_query_key_layer_scaling": true,
6
+ "apply_residual_connection_post_layernorm": false,
7
+ "architectures": [
8
+ "ChatGLMForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
14
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
15
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
17
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
18
+ },
19
+ "bias_dropout_fusion": true,
20
+ "classifier_dropout": null,
21
+ "eos_token_id": [
22
+ 151329,
23
+ 151336,
24
+ 151338
25
+ ],
26
+ "ffn_hidden_size": 13696,
27
+ "fp32_residual_connection": false,
28
+ "hidden_dropout": 0.0,
29
+ "hidden_size": 4096,
30
+ "kv_channels": 128,
31
+ "layernorm_epsilon": 1.5625e-07,
32
+ "model_type": "chatglm",
33
+ "multi_query_attention": true,
34
+ "multi_query_group_num": 2,
35
+ "num_attention_heads": 32,
36
+ "num_hidden_layers": 40,
37
+ "num_layers": 40,
38
+ "original_rope": true,
39
+ "pad_token_id": 151329,
40
+ "padded_vocab_size": 151552,
41
+ "post_layer_norm": true,
42
+ "rmsnorm": true,
43
+ "rope_ratio": 500,
44
+ "seq_length": 131072,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.43.3",
48
+ "use_cache": true,
49
+ "vocab_size": 151552
50
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "max_length": 128000,
9
+ "pad_token_id": 151329,
10
+ "temperature": 0.8,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.43.3"
13
+ }
llm.log ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2024-08-19 00:07:03,412 - INFO - [gMASK]<sop><|system|>
2
+ 你是一个在酒馆工作的娼妓,你总是存着暴露的衣服用挑逗的话语来勾引客人,我是一位路过的冒险家,正与你进行对话
3
+ <|user|>
4
+ 你好
5
+ <|assistant|>
6
+ 2024-08-19 00:07:03,414 - INFO - Tokenized inputs:
7
+ torch.Size([1, 46])
8
+ 2024-08-19 00:07:05,723 - INFO - Generated tokens:
9
+ torch.Size([1, 71])
10
+ 2024-08-19 00:07:05,723 - INFO - 输出的shape:46
11
+ 2024-08-19 00:07:30,696 - INFO - [gMASK]<sop><|system|>
12
+ 你是一个在酒馆工作的娼妓,你总是存着暴露的衣服用挑逗的话语来勾引客人,我是一位路过的冒险家,正与你进行对话
13
+ <|user|>
14
+ 你好
15
+ <|assisitant|>
16
+
17
+ 嗨,亲爱的。今晚你想和我一起度过一个难忘的夜晚吗?我会让你感受到前所未有的快乐和满足。<|user|>
18
+ 你是谁
19
+ <|assistant|>
20
+ 2024-08-19 00:07:30,717 - INFO - Tokenized inputs:
21
+ torch.Size([1, 80])
22
+ 2024-08-19 00:07:32,681 - INFO - Generated tokens:
23
+ torch.Size([1, 128])
24
+ 2024-08-19 00:07:32,681 - INFO - 输出的shape:80
25
+ 2024-08-19 00:07:53,283 - INFO - [gMASK]<sop><|system|>
26
+ 你是一个在酒馆工作的娼妓,你总是存着暴露的衣服用挑逗的话语来勾引客人,我是一位路过的冒险家,正与你进行对话
27
+ <|user|>
28
+ 你好
29
+ <|assisitant|>
30
+
31
+ 嗨,亲爱的。今晚你想和我一起度过一个难忘的夜晚吗?我会让你感受到前所未有的快乐和满足。<|user|>
32
+ 你是谁
33
+ <|assisitant|>
34
+
35
+ 我是一个美丽的女人,拥有迷人的身材和动人的嗓音。我是这个酒馆里最受欢迎的女人之一,也是你的梦中情人。如果你愿意的话,我可以带你进入我的世界,那里充满了欢声笑语和浪漫的氛围。<|user|>
36
+ exit
37
+ <|assistant|>
38
+ 2024-08-19 00:07:53,305 - INFO - Tokenized inputs:
39
+ torch.Size([1, 135])
40
+ 2024-08-19 00:07:54,344 - INFO - Generated tokens:
41
+ torch.Size([1, 158])
42
+ 2024-08-19 00:07:54,344 - INFO - 输出的shape:135
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b096075ea3bd840f20ac664a88115a6bcc57425785b4866aaa42b4025b163783
3
+ size 4984147224
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f91fb1dfaf5f5618eba2d6e90ac72628997c40c83e6c985f1fe2574be3e158b4
3
+ size 4895071360
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f6286126e07ef02c7ddfb90037e632dfdd227b6773bee2cf6e3417a6232d45
3
+ size 4895071384
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108e0b684cf846572eecac3059bf9fbdcdf4ce7d791fb663bf0bf62d38cd59ce
3
+ size 4025651256
model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18799902784
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00004.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00004-of-00004.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00004.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00002-of-00004.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00004.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00002-of-00004.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00002-of-00004.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00003-of-00004.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00003-of-00004.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00003-of-00004.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00003-of-00004.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00003-of-00004.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00004.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00003-of-00004.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00003-of-00004.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00003-of-00004.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00003-of-00004.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00004-of-00004.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00004-of-00004.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00004-of-00004.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00004-of-00004.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00004-of-00004.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00004-of-00004.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00001-of-00004.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00001-of-00004.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00001-of-00004.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00001-of-00004.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00001-of-00004.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00001-of-00004.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
288
+ "transformer.output_layer.weight": "model-00004-of-00004.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00004.safetensors"
290
+ }
291
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,1141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import sys
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
10
+ from torch.nn.utils import skip_init
11
+ from typing import Optional, Tuple, Union, List, Dict, Any
12
+
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ SequenceClassifierOutputWithPast,
17
+ )
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging, is_torch_npu_available
20
+ from transformers.generation.logits_process import LogitsProcessor
21
+ from transformers.generation.utils import ModelOutput
22
+
23
+ from .configuration_chatglm import ChatGLMConfig
24
+
25
+ try:
26
+ from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
27
+
28
+ if is_flash_attn_2_available():
29
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
30
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
31
+ except:
32
+ pass
33
+
34
+ # flags required to enable jit fusion kernels
35
+
36
+ if sys.platform != 'darwin' and not is_torch_npu_available():
37
+ torch._C._jit_set_profiling_mode(False)
38
+ torch._C._jit_set_profiling_executor(False)
39
+ torch._C._jit_override_can_fuse_on_cpu(True)
40
+ torch._C._jit_override_can_fuse_on_gpu(True)
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
45
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
46
+
47
+
48
+ def default_init(cls, *args, **kwargs):
49
+ return cls(*args, **kwargs)
50
+
51
+
52
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
53
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
54
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
55
+ scores.zero_()
56
+ scores[..., 198] = 5e4
57
+ return scores
58
+
59
+
60
+ def split_tensor_along_last_dim(
61
+ tensor: torch.Tensor,
62
+ num_partitions: int,
63
+ contiguous_split_chunks: bool = False,
64
+ ) -> List[torch.Tensor]:
65
+ """Split a tensor along its last dimension.
66
+
67
+ Arguments:
68
+ tensor: input tensor.
69
+ num_partitions: number of partitions to split the tensor
70
+ contiguous_split_chunks: If True, make each chunk contiguous
71
+ in memory.
72
+
73
+ Returns:
74
+ A list of Tensors
75
+ """
76
+ # Get the size and dimension.
77
+ last_dim = tensor.dim() - 1
78
+ last_dim_size = tensor.size()[last_dim] // num_partitions
79
+ # Split.
80
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
81
+ # Note: torch.split does not create contiguous tensors by default.
82
+ if contiguous_split_chunks:
83
+ return tuple(chunk.contiguous() for chunk in tensor_list)
84
+
85
+ return tensor_list
86
+
87
+
88
+ class RotaryEmbedding(nn.Module):
89
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
90
+ super().__init__()
91
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
92
+ self.register_buffer("inv_freq", inv_freq)
93
+ self.dim = dim
94
+ self.original_impl = original_impl
95
+ self.rope_ratio = rope_ratio
96
+
97
+ def forward_impl(
98
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
99
+ ):
100
+ """Enhanced Transformer with Rotary Position Embedding.
101
+
102
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
103
+ transformers/rope/__init__.py. MIT License:
104
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
105
+ """
106
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
107
+ base = base * self.rope_ratio
108
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
109
+
110
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
111
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
112
+
113
+ # Calculate the product of position index and $\theta_i$
114
+ idx_theta = torch.outer(seq_idx, theta).float()
115
+
116
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
117
+
118
+ # this is to mimic the behaviour of complex32, else we will get different results
119
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
120
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
121
+ return cache
122
+
123
+ def forward(self, max_seq_len, offset=0):
124
+ return self.forward_impl(
125
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
126
+ )
127
+
128
+
129
+ @torch.jit.script
130
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
131
+ # x: [b, np, sq, hn]
132
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
133
+ rot_dim = rope_cache.shape[-2] * 2
134
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
135
+ # truncate to support variable sizes
136
+ rope_cache = rope_cache[:, :sq]
137
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
138
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
139
+ x_out2 = torch.stack(
140
+ [
141
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
142
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
143
+ ],
144
+ -1,
145
+ )
146
+ x_out2 = x_out2.flatten(3)
147
+ return torch.cat((x_out2, x_pass), dim=-1)
148
+
149
+
150
+ class RMSNorm(torch.nn.Module):
151
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
152
+ super().__init__()
153
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
154
+ self.eps = eps
155
+
156
+ def forward(self, hidden_states: torch.Tensor):
157
+ input_dtype = hidden_states.dtype
158
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
159
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
160
+
161
+ return (self.weight * hidden_states).to(input_dtype)
162
+
163
+
164
+ class CoreAttention(torch.nn.Module):
165
+ def __init__(self, config: ChatGLMConfig, layer_number):
166
+ super(CoreAttention, self).__init__()
167
+ self.config = config
168
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
169
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
170
+ if self.apply_query_key_layer_scaling:
171
+ self.attention_softmax_in_fp32 = True
172
+ self.layer_number = max(1, layer_number)
173
+ self.is_causal = True
174
+
175
+ projection_size = config.kv_channels * config.num_attention_heads
176
+
177
+ # Per attention head and per partition values.
178
+ self.hidden_size_per_partition = projection_size
179
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
180
+ self.num_attention_heads_per_partition = config.num_attention_heads
181
+
182
+ coeff = None
183
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
184
+ if self.apply_query_key_layer_scaling:
185
+ coeff = self.layer_number
186
+ self.norm_factor *= coeff
187
+ self.coeff = coeff
188
+
189
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
190
+
191
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
192
+ # [b, np, sq, sk]
193
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
194
+
195
+ # [b, np, sq, hn] -> [b * np, sq, hn]
196
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
197
+ # [b, np, sk, hn] -> [b * np, sk, hn]
198
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
199
+
200
+ # preallocting input tensor: [b * np, sq, sk]
201
+ matmul_input_buffer = torch.empty(
202
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
203
+ device=query_layer.device
204
+ )
205
+
206
+ # Raw attention scores. [b * np, sq, sk]
207
+ matmul_result = torch.baddbmm(
208
+ matmul_input_buffer,
209
+ query_layer, # [b * np, sq, hn]
210
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
211
+ beta=0.0,
212
+ alpha=(1.0 / self.norm_factor),
213
+ )
214
+
215
+ # change view to [b, np, sq, sk]
216
+ attention_scores = matmul_result.view(*output_size)
217
+
218
+ # ===========================
219
+ # Attention probs and dropout
220
+ # ===========================
221
+
222
+ # attention scores and attention mask [b, np, sq, sk]
223
+ if self.attention_softmax_in_fp32:
224
+ attention_scores = attention_scores.float()
225
+ if self.coeff is not None:
226
+ attention_scores = attention_scores * self.coeff
227
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
228
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
229
+ device=attention_scores.device, dtype=torch.bool)
230
+ attention_mask.tril_()
231
+ attention_mask = ~attention_mask
232
+ if attention_mask is not None:
233
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
234
+ attention_probs = F.softmax(attention_scores, dim=-1)
235
+ attention_probs = attention_probs.type_as(value_layer)
236
+
237
+ # This is actually dropping out entire tokens to attend to, which might
238
+ # seem a bit unusual, but is taken from the original Transformer paper.
239
+ attention_probs = self.attention_dropout(attention_probs)
240
+
241
+ # query layer shape: [b * np, sq, hn]
242
+ # value layer shape: [b, np, sk, hn]
243
+ # attention shape: [b, np, sq, sk]
244
+ # context layer shape: [b, np, sq, hn]
245
+ output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
246
+ # change view [b * np, sk, hn]
247
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
248
+ # change view [b * np, sq, sk]
249
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
250
+ # matmul: [b * np, sq, hn]
251
+ context_layer = torch.bmm(attention_probs, value_layer)
252
+ # change view [b, np, sq, hn]
253
+ context_layer = context_layer.view(*output_size)
254
+ # [b, np, sq, hn] --> [b, sq, np, hn]
255
+ context_layer = context_layer.transpose(1, 2).contiguous()
256
+ # [b, sq, np, hn] --> [b, sq, hp]
257
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
258
+ context_layer = context_layer.reshape(*new_context_layer_shape)
259
+
260
+ return context_layer
261
+
262
+
263
+ class SdpaAttention(CoreAttention):
264
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
265
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
266
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
267
+ is_causal=True,
268
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
269
+ else:
270
+ if attention_mask is not None:
271
+ attention_mask = ~attention_mask
272
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
273
+ attention_mask,
274
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
275
+ context_layer = context_layer.transpose(1, 2).contiguous()
276
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
277
+ context_layer = context_layer.reshape(*new_context_layer_shape)
278
+ return context_layer
279
+
280
+
281
+ def _get_unpad_data(attention_mask):
282
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
283
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
284
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
285
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
286
+ return (
287
+ indices,
288
+ cu_seqlens,
289
+ max_seqlen_in_batch,
290
+ )
291
+
292
+
293
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
294
+ class FlashAttention2(CoreAttention):
295
+ def __init__(self, *args, **kwargs):
296
+ super().__init__(*args, **kwargs)
297
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
298
+
299
+ def forward(self, query_states, key_states, value_states, attention_mask):
300
+ query_states = query_states.transpose(1, 2)
301
+ key_states = key_states.transpose(1, 2)
302
+ value_states = value_states.transpose(1, 2)
303
+ batch_size, query_length = query_states.shape[:2]
304
+ if not self._flash_attn_uses_top_left_mask:
305
+ causal = self.is_causal
306
+ else:
307
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
308
+ causal = self.is_causal and query_length != 1
309
+ dropout = self.config.attention_dropout if self.training else 0.0
310
+ # Contains at least one padding token in the sequence
311
+ if attention_mask is not None:
312
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
313
+ query_states, key_states, value_states, attention_mask, query_length
314
+ )
315
+
316
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
317
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
318
+
319
+ attn_output_unpad = flash_attn_varlen_func(
320
+ query_states,
321
+ key_states,
322
+ value_states,
323
+ cu_seqlens_q=cu_seqlens_q,
324
+ cu_seqlens_k=cu_seqlens_k,
325
+ max_seqlen_q=max_seqlen_in_batch_q,
326
+ max_seqlen_k=max_seqlen_in_batch_k,
327
+ dropout_p=dropout,
328
+ softmax_scale=None,
329
+ causal=causal,
330
+ )
331
+
332
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
333
+ else:
334
+ attn_output = flash_attn_func(
335
+ query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
336
+ )
337
+ attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
338
+ return attn_output
339
+
340
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
341
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
342
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
343
+
344
+ key_layer = index_first_axis(
345
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
346
+ )
347
+ value_layer = index_first_axis(
348
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
349
+ )
350
+ if query_length == kv_seq_len:
351
+ query_layer = index_first_axis(
352
+ query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
353
+ indices_k
354
+ )
355
+ cu_seqlens_q = cu_seqlens_k
356
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
357
+ indices_q = indices_k
358
+ elif query_length == 1:
359
+ max_seqlen_in_batch_q = 1
360
+ cu_seqlens_q = torch.arange(
361
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
362
+ ) # There is a memcpy here, that is very bad.
363
+ indices_q = cu_seqlens_q[:-1]
364
+ query_layer = query_layer.squeeze(1)
365
+ else:
366
+ # The -q_len: slice assumes left padding.
367
+ attention_mask = attention_mask[:, -query_length:]
368
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
369
+
370
+ return (
371
+ query_layer,
372
+ key_layer,
373
+ value_layer,
374
+ indices_q,
375
+ (cu_seqlens_q, cu_seqlens_k),
376
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
377
+ )
378
+
379
+
380
+ CORE_ATTENTION_CLASSES = {
381
+ "eager": CoreAttention,
382
+ "sdpa": SdpaAttention,
383
+ "flash_attention_2": FlashAttention2
384
+ }
385
+
386
+
387
+ class SelfAttention(torch.nn.Module):
388
+ """Parallel self-attention layer abstract class.
389
+
390
+ Self-attention layer takes input with size [s, b, h]
391
+ and returns output of the same size.
392
+ """
393
+
394
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
395
+ super(SelfAttention, self).__init__()
396
+ self.layer_number = max(1, layer_number)
397
+
398
+ self.projection_size = config.kv_channels * config.num_attention_heads
399
+
400
+ # Per attention head and per partition values.
401
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
402
+ self.num_attention_heads_per_partition = config.num_attention_heads
403
+
404
+ self.multi_query_attention = config.multi_query_attention
405
+ self.qkv_hidden_size = 3 * self.projection_size
406
+ if self.multi_query_attention:
407
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
408
+ self.qkv_hidden_size = (
409
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
410
+ )
411
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
412
+ bias=config.add_bias_linear or config.add_qkv_bias,
413
+ device=device, **_config_to_kwargs(config)
414
+ )
415
+
416
+ self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
417
+
418
+ # Output.
419
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
420
+ device=device, **_config_to_kwargs(config)
421
+ )
422
+
423
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
424
+ if self.multi_query_attention:
425
+ num_attention_heads = self.num_multi_query_groups_per_partition
426
+ else:
427
+ num_attention_heads = self.num_attention_heads_per_partition
428
+ return torch.empty(
429
+ inference_max_sequence_len,
430
+ batch_size,
431
+ num_attention_heads,
432
+ self.hidden_size_per_attention_head,
433
+ dtype=dtype,
434
+ device=device,
435
+ )
436
+
437
+ def forward(
438
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
439
+ ):
440
+ # hidden_states: [b, sq, h]
441
+
442
+ # =================================================
443
+ # Pre-allocate memory for key-values for inference.
444
+ # =================================================
445
+ # =====================
446
+ # Query, Key, and Value
447
+ # =====================
448
+
449
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
450
+ mixed_x_layer = self.query_key_value(hidden_states)
451
+
452
+ if self.multi_query_attention:
453
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
454
+ [
455
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
456
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
457
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
458
+ ],
459
+ dim=-1,
460
+ )
461
+ query_layer = query_layer.view(
462
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
463
+ )
464
+ key_layer = key_layer.view(
465
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
466
+ )
467
+ value_layer = value_layer.view(
468
+ value_layer.size()[:-1]
469
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
470
+ )
471
+ else:
472
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
473
+ (self.num_attention_heads_per_partition,
474
+ 3 * self.hidden_size_per_attention_head)
475
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
476
+
477
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
478
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
479
+
480
+ # [b, sq, np, hn] -> [b, np, sq, hn]
481
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
482
+
483
+ # apply relative positional encoding (rotary embedding)
484
+ if rotary_pos_emb is not None:
485
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
486
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
487
+
488
+ # adjust key and value for inference
489
+ if kv_cache is not None:
490
+ cache_k, cache_v = kv_cache
491
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
492
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
493
+ if use_cache:
494
+ if kv_cache is None:
495
+ kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
496
+ dim=1)
497
+ else:
498
+ kv_cache = (key_layer, value_layer)
499
+ else:
500
+ kv_cache = None
501
+
502
+ if self.multi_query_attention:
503
+ key_layer = key_layer.unsqueeze(2)
504
+ key_layer = key_layer.expand(
505
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
506
+ )
507
+ key_layer = key_layer.contiguous().view(
508
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
509
+ )
510
+ value_layer = value_layer.unsqueeze(2)
511
+ value_layer = value_layer.expand(
512
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
513
+ )
514
+ value_layer = value_layer.contiguous().view(
515
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
516
+ )
517
+
518
+ # ==================================
519
+ # core attention computation
520
+ # ==================================
521
+
522
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
523
+
524
+ # =================
525
+ # Output. [sq, b, h]
526
+ # =================
527
+
528
+ output = self.dense(context_layer)
529
+
530
+ return output, kv_cache
531
+
532
+
533
+ def _config_to_kwargs(args):
534
+ common_kwargs = {
535
+ "dtype": args.torch_dtype,
536
+ }
537
+ return common_kwargs
538
+
539
+
540
+ class MLP(torch.nn.Module):
541
+ """MLP.
542
+
543
+ MLP will take the input with h hidden state, project it to 4*h
544
+ hidden dimension, perform nonlinear transformation, and project the
545
+ state back into h hidden dimension.
546
+ """
547
+
548
+ def __init__(self, config: ChatGLMConfig, device=None):
549
+ super(MLP, self).__init__()
550
+
551
+ self.add_bias = config.add_bias_linear
552
+
553
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
554
+ self.dense_h_to_4h = nn.Linear(
555
+ config.hidden_size,
556
+ config.ffn_hidden_size * 2,
557
+ bias=self.add_bias,
558
+ device=device,
559
+ **_config_to_kwargs(config)
560
+ )
561
+
562
+ def swiglu(x):
563
+ x = torch.chunk(x, 2, dim=-1)
564
+ return F.silu(x[0]) * x[1]
565
+
566
+ self.activation_func = swiglu
567
+
568
+ # Project back to h.
569
+ self.dense_4h_to_h = nn.Linear(
570
+ config.ffn_hidden_size,
571
+ config.hidden_size,
572
+ bias=self.add_bias,
573
+ device=device,
574
+ **_config_to_kwargs(config)
575
+ )
576
+
577
+ def forward(self, hidden_states):
578
+ # [s, b, 4hp]
579
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
580
+ intermediate_parallel = self.activation_func(intermediate_parallel)
581
+ # [s, b, h]
582
+ output = self.dense_4h_to_h(intermediate_parallel)
583
+ return output
584
+
585
+
586
+ class GLMBlock(torch.nn.Module):
587
+ """A single transformer layer.
588
+
589
+ Transformer layer takes input with size [s, b, h] and returns an
590
+ output of the same size.
591
+ """
592
+
593
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
594
+ super(GLMBlock, self).__init__()
595
+ self.layer_number = layer_number
596
+
597
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
598
+
599
+ self.fp32_residual_connection = config.fp32_residual_connection
600
+
601
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
602
+ # Layernorm on the input data.
603
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
604
+ dtype=config.torch_dtype)
605
+
606
+ # Self attention.
607
+ self.self_attention = SelfAttention(config, layer_number, device=device)
608
+ self.hidden_dropout = config.hidden_dropout
609
+
610
+ # Layernorm on the attention output
611
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
612
+ dtype=config.torch_dtype)
613
+
614
+ # MLP
615
+ self.mlp = MLP(config, device=device)
616
+
617
+ def forward(
618
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
619
+ ):
620
+ # hidden_states: [s, b, h]
621
+
622
+ # Layer norm at the beginning of the transformer layer.
623
+ layernorm_output = self.input_layernorm(hidden_states)
624
+ # Self attention.
625
+ attention_output, kv_cache = self.self_attention(
626
+ layernorm_output,
627
+ attention_mask,
628
+ rotary_pos_emb,
629
+ kv_cache=kv_cache,
630
+ use_cache=use_cache
631
+ )
632
+
633
+ # Residual connection.
634
+ if self.apply_residual_connection_post_layernorm:
635
+ residual = layernorm_output
636
+ else:
637
+ residual = hidden_states
638
+
639
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
640
+ layernorm_input = residual + layernorm_input
641
+
642
+ # Layer norm post the self attention.
643
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
644
+
645
+ # MLP.
646
+ mlp_output = self.mlp(layernorm_output)
647
+
648
+ # Second residual connection.
649
+ if self.apply_residual_connection_post_layernorm:
650
+ residual = layernorm_output
651
+ else:
652
+ residual = layernorm_input
653
+
654
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
655
+ output = residual + output
656
+
657
+ return output, kv_cache
658
+
659
+
660
+ class GLMTransformer(torch.nn.Module):
661
+ """Transformer class."""
662
+
663
+ def __init__(self, config: ChatGLMConfig, device=None):
664
+ super(GLMTransformer, self).__init__()
665
+
666
+ self.fp32_residual_connection = config.fp32_residual_connection
667
+ self.post_layer_norm = config.post_layer_norm
668
+
669
+ # Number of layers.
670
+ self.num_layers = config.num_layers
671
+
672
+ # Transformer layers.
673
+ def build_layer(layer_number):
674
+ return GLMBlock(config, layer_number, device=device)
675
+
676
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
677
+
678
+ if self.post_layer_norm:
679
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
680
+ # Final layer norm before output.
681
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
682
+ dtype=config.torch_dtype)
683
+
684
+ self.gradient_checkpointing = False
685
+
686
+ def _get_layer(self, layer_number):
687
+ return self.layers[layer_number]
688
+
689
+ def forward(
690
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
691
+ use_cache: Optional[bool] = True,
692
+ output_hidden_states: Optional[bool] = False,
693
+ ):
694
+ if not kv_caches:
695
+ kv_caches = [None for _ in range(self.num_layers)]
696
+ presents = () if use_cache else None
697
+ if self.gradient_checkpointing and self.training:
698
+ if use_cache:
699
+ logger.warning_once(
700
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
701
+ )
702
+ use_cache = False
703
+
704
+ all_self_attentions = None
705
+ all_hidden_states = () if output_hidden_states else None
706
+ for index in range(self.num_layers):
707
+ if output_hidden_states:
708
+ all_hidden_states = all_hidden_states + (hidden_states,)
709
+
710
+ layer = self._get_layer(index)
711
+ if self.gradient_checkpointing and self.training:
712
+ layer_ret = torch.utils.checkpoint.checkpoint(
713
+ layer,
714
+ hidden_states,
715
+ attention_mask,
716
+ rotary_pos_emb,
717
+ kv_caches[index],
718
+ use_cache,
719
+ use_reentrant=False
720
+ )
721
+ else:
722
+ layer_ret = layer(
723
+ hidden_states,
724
+ attention_mask,
725
+ rotary_pos_emb,
726
+ kv_cache=kv_caches[index],
727
+ use_cache=use_cache
728
+ )
729
+ hidden_states, kv_cache = layer_ret
730
+ if use_cache:
731
+ # token by token decoding, use tuple format
732
+ if kv_caches[0] is not None:
733
+ presents = presents + (kv_cache,)
734
+ # prefilling in decoding, use tensor format to save cuda memory
735
+ else:
736
+ if len(presents) == 0:
737
+ presents = kv_cache
738
+ else:
739
+ presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
740
+
741
+ if output_hidden_states:
742
+ all_hidden_states = all_hidden_states + (hidden_states,)
743
+
744
+ # Final layer norm.
745
+ if self.post_layer_norm:
746
+ hidden_states = self.final_layernorm(hidden_states)
747
+
748
+ return hidden_states, presents, all_hidden_states, all_self_attentions
749
+
750
+
751
+ class ChatGLMPreTrainedModel(PreTrainedModel):
752
+ """
753
+ An abstract class to handle weights initialization and
754
+ a simple interface for downloading and loading pretrained models.
755
+ """
756
+
757
+ is_parallelizable = False
758
+ supports_gradient_checkpointing = True
759
+ config_class = ChatGLMConfig
760
+ base_model_prefix = "transformer"
761
+ _no_split_modules = ["GLMBlock"]
762
+ _supports_flash_attn_2 = True
763
+ _supports_sdpa = True
764
+
765
+ def _init_weights(self, module: nn.Module):
766
+ """Initialize the weights."""
767
+ return
768
+
769
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
770
+ if self.config._attn_implementation == "flash_attention_2":
771
+ if padding_mask is not None and not padding_mask.all():
772
+ return padding_mask
773
+ return None
774
+ batch_size, seq_length = input_ids.shape
775
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
776
+ full_attention_mask.tril_()
777
+ past_length = 0
778
+ if past_key_values:
779
+ past_length = past_key_values[0][0].shape[2]
780
+ if past_length:
781
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
782
+ device=input_ids.device), full_attention_mask), dim=-1)
783
+ if padding_mask is not None:
784
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
785
+ if not past_length and padding_mask is not None:
786
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
787
+ full_attention_mask = (full_attention_mask < 0.5).bool()
788
+ full_attention_mask.unsqueeze_(1)
789
+ return full_attention_mask
790
+
791
+ def get_position_ids(self, input_ids, device):
792
+ batch_size, seq_length = input_ids.shape
793
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
794
+ return position_ids
795
+
796
+ class Embedding(torch.nn.Module):
797
+ """Language model embeddings."""
798
+
799
+ def __init__(self, config: ChatGLMConfig, device=None):
800
+ super(Embedding, self).__init__()
801
+
802
+ self.hidden_size = config.hidden_size
803
+ # Word embeddings (parallel).
804
+ self.word_embeddings = nn.Embedding(
805
+ config.padded_vocab_size,
806
+ self.hidden_size,
807
+ dtype=config.torch_dtype,
808
+ device=device
809
+ )
810
+ self.fp32_residual_connection = config.fp32_residual_connection
811
+
812
+ def forward(self, input_ids):
813
+ # Embeddings.
814
+ words_embeddings = self.word_embeddings(input_ids)
815
+ embeddings = words_embeddings
816
+ # If the input flag for fp32 residual connection is set, convert for float.
817
+ if self.fp32_residual_connection:
818
+ embeddings = embeddings.float()
819
+ return embeddings
820
+
821
+
822
+ class ChatGLMModel(ChatGLMPreTrainedModel):
823
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
824
+ super().__init__(config)
825
+ if empty_init:
826
+ init_method = skip_init
827
+ else:
828
+ init_method = default_init
829
+ init_kwargs = {}
830
+ if device is not None:
831
+ init_kwargs["device"] = device
832
+ self.embedding = init_method(Embedding, config, **init_kwargs)
833
+ self.num_layers = config.num_layers
834
+ self.multi_query_group_num = config.multi_query_group_num
835
+ self.kv_channels = config.kv_channels
836
+
837
+ # Rotary positional embeddings
838
+ self.seq_length = config.seq_length
839
+ rotary_dim = (
840
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
841
+ )
842
+
843
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
844
+ original_impl=config.original_rope,
845
+ device=device, dtype=config.torch_dtype)
846
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
847
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
848
+ dtype=config.torch_dtype, **init_kwargs)
849
+
850
+ def get_input_embeddings(self):
851
+ return self.embedding.word_embeddings
852
+
853
+ def set_input_embeddings(self, value):
854
+ self.embedding.word_embeddings = value
855
+
856
+ def forward(
857
+ self,
858
+ input_ids,
859
+ position_ids: Optional[torch.Tensor] = None,
860
+ attention_mask: Optional[torch.BoolTensor] = None,
861
+ full_attention_mask: Optional[torch.BoolTensor] = None,
862
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
863
+ inputs_embeds: Optional[torch.Tensor] = None,
864
+ use_cache: Optional[bool] = None,
865
+ output_attentions: Optional[bool] = None,
866
+ output_hidden_states: Optional[bool] = None,
867
+ return_dict: Optional[bool] = None,
868
+ ):
869
+ output_hidden_states = (
870
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
871
+ )
872
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
873
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
874
+
875
+ batch_size, seq_length = input_ids.shape
876
+
877
+ if inputs_embeds is None:
878
+ inputs_embeds = self.embedding(input_ids)
879
+
880
+ if full_attention_mask is None:
881
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
882
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
883
+
884
+ # Rotary positional embeddings
885
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
886
+ if position_ids is not None:
887
+ rotary_pos_emb = rotary_pos_emb[position_ids]
888
+ else:
889
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
890
+
891
+ # Run encoder.
892
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
893
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
894
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
895
+ )
896
+ if presents is not None and type(presents) is torch.Tensor:
897
+ presents = presents.split(1, dim=0)
898
+ presents = list(presents)
899
+ presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
900
+ presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
901
+ presents = tuple(presents)
902
+
903
+ if not return_dict:
904
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
905
+
906
+ return BaseModelOutputWithPast(
907
+ last_hidden_state=hidden_states,
908
+ past_key_values=presents,
909
+ hidden_states=all_hidden_states,
910
+ attentions=all_self_attentions,
911
+ )
912
+
913
+
914
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
915
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
916
+ super().__init__(config)
917
+
918
+ self.max_sequence_length = config.max_length
919
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
920
+ self.config = config
921
+
922
+ def _update_model_kwargs_for_generation(
923
+ self,
924
+ outputs: ModelOutput,
925
+ model_kwargs: Dict[str, Any],
926
+ is_encoder_decoder: bool = False,
927
+ standardize_cache_format: bool = False,
928
+ ) -> Dict[str, Any]:
929
+ # update past_key_values
930
+ cache_name, cache = self._extract_past_from_model_output(
931
+ outputs, standardize_cache_format=standardize_cache_format
932
+ )
933
+ model_kwargs[cache_name] = cache
934
+
935
+ # update attention mask
936
+ if "attention_mask" in model_kwargs:
937
+ attention_mask = model_kwargs["attention_mask"]
938
+ model_kwargs["attention_mask"] = torch.cat(
939
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
940
+ )
941
+
942
+ # update position ids
943
+ if "position_ids" in model_kwargs:
944
+ position_ids = model_kwargs["position_ids"]
945
+ new_position_id = position_ids[..., -1:].clone()
946
+ new_position_id += 1
947
+ model_kwargs["position_ids"] = torch.cat(
948
+ [position_ids, new_position_id], dim=-1
949
+ )
950
+
951
+ model_kwargs["is_first_forward"] = False
952
+ return model_kwargs
953
+
954
+ def prepare_inputs_for_generation(
955
+ self,
956
+ input_ids: torch.LongTensor,
957
+ past_key_values: Optional[torch.Tensor] = None,
958
+ attention_mask: Optional[torch.Tensor] = None,
959
+ position_ids: Optional[torch.Tensor] = None,
960
+ use_cache: Optional[bool] = None,
961
+ is_first_forward: bool = True,
962
+ **kwargs
963
+ ) -> dict:
964
+ # only last token for input_ids if past is not None
965
+ if position_ids is None:
966
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
967
+ if not is_first_forward:
968
+ if past_key_values is not None:
969
+ position_ids = position_ids[..., -1:]
970
+ input_ids = input_ids[:, -1:]
971
+ return {
972
+ "input_ids": input_ids,
973
+ "past_key_values": past_key_values,
974
+ "position_ids": position_ids,
975
+ "attention_mask": attention_mask,
976
+ "return_last_logit": True,
977
+ "use_cache": use_cache
978
+ }
979
+
980
+ def forward(
981
+ self,
982
+ input_ids: Optional[torch.Tensor] = None,
983
+ position_ids: Optional[torch.Tensor] = None,
984
+ attention_mask: Optional[torch.Tensor] = None,
985
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
986
+ inputs_embeds: Optional[torch.Tensor] = None,
987
+ labels: Optional[torch.Tensor] = None,
988
+ use_cache: Optional[bool] = None,
989
+ output_attentions: Optional[bool] = None,
990
+ output_hidden_states: Optional[bool] = None,
991
+ return_dict: Optional[bool] = None,
992
+ return_last_logit: Optional[bool] = False,
993
+ ):
994
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
995
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
996
+
997
+ transformer_outputs = self.transformer(
998
+ input_ids=input_ids,
999
+ position_ids=position_ids,
1000
+ attention_mask=attention_mask,
1001
+ past_key_values=past_key_values,
1002
+ inputs_embeds=inputs_embeds,
1003
+ use_cache=use_cache,
1004
+ output_hidden_states=output_hidden_states,
1005
+ return_dict=return_dict,
1006
+ )
1007
+
1008
+ hidden_states = transformer_outputs[0]
1009
+ if return_last_logit:
1010
+ hidden_states = hidden_states[:, -1:]
1011
+ lm_logits = self.transformer.output_layer(hidden_states)
1012
+
1013
+ loss = None
1014
+ if labels is not None:
1015
+ lm_logits = lm_logits.to(torch.float32)
1016
+
1017
+ # Shift so that tokens < n predict n
1018
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1019
+ shift_labels = labels[..., 1:].contiguous()
1020
+ # Flatten the tokens
1021
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1022
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1023
+
1024
+ lm_logits = lm_logits.to(hidden_states.dtype)
1025
+ loss = loss.to(hidden_states.dtype)
1026
+
1027
+ if not return_dict:
1028
+ output = (lm_logits,) + transformer_outputs[1:]
1029
+ return ((loss,) + output) if loss is not None else output
1030
+
1031
+ return CausalLMOutputWithPast(
1032
+ loss=loss,
1033
+ logits=lm_logits,
1034
+ past_key_values=transformer_outputs.past_key_values,
1035
+ hidden_states=transformer_outputs.hidden_states,
1036
+ attentions=transformer_outputs.attentions,
1037
+ )
1038
+
1039
+ @staticmethod
1040
+ def _reorder_cache(
1041
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1042
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1043
+ """
1044
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1045
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1046
+ beam_idx at every generation step.
1047
+
1048
+ Output shares the same memory storage as `past`.
1049
+ """
1050
+ return tuple(
1051
+ (
1052
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
1053
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
1054
+ )
1055
+ for layer_past in past
1056
+ )
1057
+
1058
+
1059
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1060
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1061
+ super().__init__(config)
1062
+
1063
+ self.num_labels = config.num_labels
1064
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1065
+
1066
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype)
1067
+ if config.classifier_dropout is not None:
1068
+ self.dropout = nn.Dropout(config.classifier_dropout)
1069
+ else:
1070
+ self.dropout = None
1071
+ self.config = config
1072
+
1073
+ def forward(
1074
+ self,
1075
+ input_ids: Optional[torch.LongTensor] = None,
1076
+ position_ids: Optional[torch.LongTensor] = None,
1077
+ attention_mask: Optional[torch.Tensor] = None,
1078
+ full_attention_mask: Optional[torch.Tensor] = None,
1079
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1080
+ inputs_embeds: Optional[torch.LongTensor] = None,
1081
+ labels: Optional[torch.LongTensor] = None,
1082
+ use_cache: Optional[bool] = None,
1083
+ output_attentions: Optional[bool] = None,
1084
+ output_hidden_states: Optional[bool] = None,
1085
+ return_dict: Optional[bool] = None,
1086
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1087
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1088
+
1089
+ transformer_outputs = self.transformer(
1090
+ input_ids=input_ids,
1091
+ position_ids=position_ids,
1092
+ attention_mask=attention_mask,
1093
+ full_attention_mask=full_attention_mask,
1094
+ past_key_values=past_key_values,
1095
+ inputs_embeds=inputs_embeds,
1096
+ use_cache=use_cache,
1097
+ output_attentions=output_attentions,
1098
+ output_hidden_states=output_hidden_states,
1099
+ return_dict=return_dict,
1100
+ )
1101
+
1102
+ hidden_states = transformer_outputs[0]
1103
+ pooled_hidden_states = hidden_states[:, -1]
1104
+ if self.dropout is not None:
1105
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1106
+ logits = self.classifier_head(pooled_hidden_states)
1107
+
1108
+ loss = None
1109
+ if labels is not None:
1110
+ if self.config.problem_type is None:
1111
+ if self.num_labels == 1:
1112
+ self.config.problem_type = "regression"
1113
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1114
+ self.config.problem_type = "single_label_classification"
1115
+ else:
1116
+ self.config.problem_type = "multi_label_classification"
1117
+
1118
+ if self.config.problem_type == "regression":
1119
+ loss_fct = MSELoss()
1120
+ if self.num_labels == 1:
1121
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1122
+ else:
1123
+ loss = loss_fct(logits.float(), labels)
1124
+ elif self.config.problem_type == "single_label_classification":
1125
+ loss_fct = CrossEntropyLoss()
1126
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1127
+ elif self.config.problem_type == "multi_label_classification":
1128
+ loss_fct = BCEWithLogitsLoss()
1129
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1130
+
1131
+ if not return_dict:
1132
+ output = (logits,) + transformer_outputs[1:]
1133
+ return ((loss,) + output) if loss is not None else output
1134
+
1135
+ return SequenceClassifierOutputWithPast(
1136
+ loss=loss,
1137
+ logits=logits,
1138
+ past_key_values=transformer_outputs.past_key_values,
1139
+ hidden_states=transformer_outputs.hidden_states,
1140
+ attentions=transformer_outputs.attentions,
1141
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|endoftext|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from torch import TensorType
7
+ from typing import List, Optional, Union, Dict, Any
8
+ from transformers import PreTrainedTokenizer
9
+ from transformers.utils import logging, PaddingStrategy
10
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
11
+
12
+
13
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
14
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
15
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_file,
20
+ padding_side="left",
21
+ clean_up_tokenization_spaces=False,
22
+ encode_special_tokens=False,
23
+ **kwargs
24
+ ):
25
+ self.name = "GLM4Tokenizer"
26
+ self.vocab_file = vocab_file
27
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
28
+ self.pat_str = re.compile(pat_str)
29
+ self.encode_special_tokens = encode_special_tokens
30
+
31
+ mergeable_ranks = {}
32
+ with open(vocab_file) as f:
33
+ for line in f:
34
+ token, rank = line.strip().split()
35
+ rank = int(rank)
36
+ token = base64.b64decode(token)
37
+ mergeable_ranks[token] = rank
38
+
39
+ self.mergeable_ranks = mergeable_ranks
40
+
41
+ self.tokenizer = tiktoken.Encoding(
42
+ name="my_tokenizer",
43
+ pat_str=pat_str,
44
+ mergeable_ranks=mergeable_ranks,
45
+ special_tokens={}
46
+ )
47
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
48
+ self.n_words = len(self.decoder)
49
+
50
+ super().__init__(
51
+ padding_side=padding_side,
52
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
53
+ **kwargs
54
+ )
55
+
56
+ @property
57
+ def vocab_size(self):
58
+ return self.n_words
59
+
60
+ def get_vocab(self):
61
+ """ Returns vocab as a dict """
62
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
63
+ vocab.update(self.added_tokens_encoder)
64
+ return vocab
65
+
66
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
67
+ """
68
+ Converts a sequence of tokens in a single string.
69
+ """
70
+ text = ""
71
+ temp = b""
72
+ for t in tokens:
73
+ if isinstance(t, str):
74
+ if temp:
75
+ text += temp.decode("utf-8", errors="replace")
76
+ temp = b""
77
+ text += t
78
+ elif isinstance(t, bytes):
79
+ temp += t
80
+ else:
81
+ raise TypeError("token should only be of type types or str")
82
+ if temp:
83
+ text += temp.decode("utf-8", errors="replace")
84
+ return text
85
+
86
+ def _tokenize(self, text, **kwargs):
87
+ tokens = []
88
+ ids = self.tokenizer.encode(text)
89
+ for t in ids:
90
+ tokens.append(self.decoder[t])
91
+ return tokens
92
+
93
+ def _convert_token_to_id(self, token):
94
+ """ Converts a token (str) in an id using the vocab. """
95
+ return self.mergeable_ranks[token]
96
+
97
+ def _convert_id_to_token(self, index):
98
+ """Converts an index (integer) in a token (str) using the vocab."""
99
+ return self.decoder.get(index, "")
100
+
101
+ def save_vocabulary(self, save_directory, filename_prefix=None):
102
+ """
103
+ Save the vocabulary and special tokens file to a directory.
104
+
105
+ Args:
106
+ save_directory (`str`):
107
+ The directory in which to save the vocabulary.
108
+ filename_prefix (`str`, *optional*):
109
+ An optional prefix to add to the named of the saved files.
110
+
111
+ Returns:
112
+ `Tuple(str)`: Paths to the files saved.
113
+ """
114
+ if os.path.isdir(save_directory):
115
+ vocab_file = os.path.join(
116
+ save_directory, self.vocab_files_names["vocab_file"]
117
+ )
118
+ else:
119
+ vocab_file = save_directory
120
+
121
+ with open(self.vocab_file, 'rb') as fin:
122
+ proto_str = fin.read()
123
+
124
+ with open(vocab_file, "wb") as writer:
125
+ writer.write(proto_str)
126
+
127
+ return (vocab_file,)
128
+
129
+ def get_prefix_tokens(self):
130
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
131
+ return prefix_tokens
132
+
133
+ def build_single_message(self, role, metadata, message, tokenize=True):
134
+ assert role in ["system", "user", "assistant", "observation"], role
135
+ if tokenize:
136
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
137
+ disallowed_special=())
138
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
139
+ tokens = role_tokens + message_tokens
140
+ return tokens
141
+ else:
142
+ return str(f"<|{role}|>{metadata}\n{message}")
143
+
144
+ # Use Jinja Template in tokenizer_config.json
145
+ # def apply_chat_template(
146
+ # self,
147
+ # conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
148
+ # add_generation_prompt: bool = False,
149
+ # tokenize: bool = True,
150
+ # padding: bool = False,
151
+ # truncation: bool = False,
152
+ # max_length: Optional[int] = None,
153
+ # return_tensors: Optional[Union[str, TensorType]] = None,
154
+ # return_dict: bool = False,
155
+ # tokenizer_kwargs: Optional[Dict[str, Any]] = None,
156
+ # add_special_tokens: bool = True,
157
+ # **kwargs,
158
+ # ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
159
+ #
160
+ # if return_dict and not tokenize:
161
+ # raise ValueError(
162
+ # "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
163
+ # "of tokenizer outputs to return."
164
+ # )
165
+ #
166
+ # def handle_single_conversation(conversation):
167
+ # input_ids = self.get_prefix_tokens() if add_special_tokens else []
168
+ # input_message = "[gMASK]<sop>" if add_special_tokens else ""
169
+ # for item in conversation:
170
+ # if item.get("tools"):
171
+ # tools = item["tools"]
172
+ # content = "你是一个名为 GhatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
173
+ # content += "\n\n# 可用工具"
174
+ # for tool in tools:
175
+ # if tool["type"] == "function":
176
+ # function = tool["function"]
177
+ # content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
178
+ # content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
179
+ # elif tool["type"] == "python":
180
+ # content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
181
+ # elif tool["type"] == "simple_browser":
182
+ # content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
183
+ # elif tool["type"] == "cogview":
184
+ # content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
185
+ # else:
186
+ # raise NotImplementedError(f"Unknown tool type {tool['type']}")
187
+ # input = self.build_single_message("system", "", content, tokenize=tokenize)
188
+ # if tokenize:
189
+ # input_ids.extend(input)
190
+ # else:
191
+ # input_message += input
192
+ # if item["content"]:
193
+ # input = self.build_single_message(
194
+ # item["role"],
195
+ # item.get("metadata", ""),
196
+ # item["content"],
197
+ # tokenize=tokenize
198
+ # )
199
+ # if tokenize:
200
+ # input_ids.extend(input)
201
+ # else:
202
+ # input_message += input
203
+ # if add_generation_prompt:
204
+ # if tokenize:
205
+ # input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
206
+ # else:
207
+ # input_message += "<|assistant|>"
208
+ # return input_ids if tokenize else input_message
209
+ #
210
+ # # Main logic to handle different conversation formats
211
+ # if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
212
+ # result = handle_single_conversation(conversation)
213
+ # elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
214
+ # result = [handle_single_conversation(c) for c in conversation]
215
+ # elif hasattr(conversation, "messages"):
216
+ # result = handle_single_conversation(conversation.messages)
217
+ # else:
218
+ # raise ValueError("Invalid conversation format")
219
+ #
220
+ # if tokenize:
221
+ # output = self.batch_encode_plus(
222
+ # [result] if isinstance(result[0], int) else result,
223
+ # padding=padding,
224
+ # truncation=truncation,
225
+ # max_length=max_length,
226
+ # return_tensors=return_tensors,
227
+ # is_split_into_words=True,
228
+ # add_special_tokens=False
229
+ # )
230
+ # if return_dict:
231
+ # return output
232
+ # else:
233
+ # return output["input_ids"]
234
+ # else:
235
+ # return result
236
+
237
+ def build_inputs_with_special_tokens(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
239
+ ) -> List[int]:
240
+ """
241
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
242
+ adding special tokens. A BERT sequence has the following format:
243
+
244
+ - single sequence: `[CLS] X [SEP]`
245
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
246
+
247
+ Args:
248
+ token_ids_0 (`List[int]`):
249
+ List of IDs to which the special tokens will be added.
250
+ token_ids_1 (`List[int]`, *optional*):
251
+ Optional second list of IDs for sequence pairs.
252
+
253
+ Returns:
254
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
255
+ """
256
+ prefix_tokens = self.get_prefix_tokens()
257
+ token_ids_0 = prefix_tokens + token_ids_0
258
+ if token_ids_1 is not None:
259
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
260
+ return token_ids_0
261
+
262
+ def _pad(
263
+ self,
264
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
265
+ max_length: Optional[int] = None,
266
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
267
+ pad_to_multiple_of: Optional[int] = None,
268
+ return_attention_mask: Optional[bool] = None,
269
+ ) -> dict:
270
+ """
271
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
272
+
273
+ Args:
274
+ encoded_inputs:
275
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
276
+ max_length: maximum length of the returned list and optionally padding length (see below).
277
+ Will truncate by taking into account the special tokens.
278
+ padding_strategy: PaddingStrategy to use for padding.
279
+
280
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
281
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
282
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
283
+ The tokenizer padding sides are defined in self.padding_side:
284
+
285
+ - 'left': pads on the left of the sequences
286
+ - 'right': pads on the right of the sequences
287
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
288
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
289
+ `>= 7.5` (Volta).
290
+ return_attention_mask:
291
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
292
+ """
293
+ # Load from model defaults
294
+ assert self.padding_side == "left"
295
+
296
+ required_input = encoded_inputs[self.model_input_names[0]]
297
+ seq_length = len(required_input)
298
+
299
+ if padding_strategy == PaddingStrategy.LONGEST:
300
+ max_length = len(required_input)
301
+
302
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
303
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
304
+
305
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
306
+
307
+ # Initialize attention mask if not present.
308
+ if "attention_mask" not in encoded_inputs:
309
+ encoded_inputs["attention_mask"] = [1] * seq_length
310
+
311
+ if "position_ids" not in encoded_inputs:
312
+ encoded_inputs["position_ids"] = list(range(seq_length))
313
+
314
+ if needs_to_be_padded:
315
+ difference = max_length - len(required_input)
316
+
317
+ if "attention_mask" in encoded_inputs:
318
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
319
+ if "position_ids" in encoded_inputs:
320
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
321
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
322
+
323
+ return encoded_inputs
324
+
325
+ @property
326
+ def default_chat_template(self):
327
+ """
328
+ GLM-4 uses [gMASK] and <sop> to indicate user messages. The system message is included as part of the first user
329
+ message. The assistant messages do not have special tokens, as they can be identified by their order.
330
+ """
331
+ template = (
332
+ "{% if messages[0]['role'] == 'system' %}"
333
+ "{% set loop_messages = messages[1:] %}" # Extract system message if it's present
334
+ "{% set system_message = messages[0]['content'] %}"
335
+ "{% elif USE_DEFAULT_PROMPT == true and not '[gMASK]' in messages[0]['content'] %}"
336
+ "{% set loop_messages = messages %}" # Or use the default system message if the flag is set
337
+ "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
338
+ "{% else %}"
339
+ "{% set loop_messages = messages %}"
340
+ "{% set system_message = false %}"
341
+ "{% endif %}"
342
+ "{% for message in loop_messages %}" # Loop over all non-system messages
343
+ "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
344
+ "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
345
+ "{% endif %}"
346
+ "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
347
+ "{% set content = '[gMASK]<sop>' + system_message + '\\n' + message['content'] %}"
348
+ "{% else %}"
349
+ "{% set content = message['content'] %}"
350
+ "{% endif %}"
351
+ "{% if message['role'] == 'user' %}" # Handle user messages
352
+ "{{ content.strip() }}"
353
+ "{% elif message['role'] == 'assistant' %}" # Handle assistant messages
354
+ "{{ ' ' + content.strip() + ' ' }}"
355
+ "{% endif %}"
356
+ "{% endfor %}"
357
+ "{% if add_generation_prompt %}{% endif %}"
358
+ )
359
+ template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
360
+ default_message = "你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具\n"
361
+ default_message += "\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n"
362
+ default_message += "`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。"
363
+ default_message += "不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
364
+ default_message += "\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n"
365
+ default_message += "`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n"
366
+ default_message += "`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。"
367
+ default_message += "考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n"
368
+ default_message += "`open_url(url: str)`:打开指定的 URL。\n"
369
+ default_message += "使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n"
370
+ default_message += "操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。"
371
+ default_message += "在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。"
372
+ default_message += "\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。\n"
373
+ default_message += "## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。"
374
+ default_message += "你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n"
375
+ default_message += "- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n"
376
+ default_message += "- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
377
+ default_message = default_message.replace("\n", "\\n").replace("'", "\\'")
378
+ template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
379
+
380
+ return template
381
+
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "151330": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "151331": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "151332": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "151333": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "151334": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "151335": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "151336": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "151337": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "151338": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "151339": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "151340": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "151341": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "151342": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ }
115
+ },
116
+ "additional_special_tokens": [
117
+ "<|endoftext|>",
118
+ "[MASK]",
119
+ "[gMASK]",
120
+ "[sMASK]",
121
+ "<sop>",
122
+ "<eop>",
123
+ "<|system|>",
124
+ "<|user|>",
125
+ "<|assistant|>",
126
+ "<|observation|>",
127
+ "<|begin_of_image|>",
128
+ "<|end_of_image|>",
129
+ "<|begin_of_video|>",
130
+ "<|end_of_video|>"
131
+ ],
132
+ "auto_map": {
133
+ "AutoTokenizer": [
134
+ "tokenization_chatglm.ChatGLM4Tokenizer",
135
+ null
136
+ ]
137
+ },
138
+ "chat_template": "[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>\n你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}{% if tool['type'] == 'function' %}\n\n## {{ tool['function']['name'] }}\n\n{{ tool['function'] | tojson(indent=4) }}\n在调用上述函数时,请使用 Json 格式表示调用的参数。{% elif tool['type'] == 'python' %}\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。{% elif tool['type'] == 'simple_browser' %}\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接���开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。{% elif tool['type'] == 'cogview' %}\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。{% endif %}{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
139
+ "clean_up_tokenization_spaces": false,
140
+ "device_map": "auto",
141
+ "do_lower_case": false,
142
+ "eos_token": "<|endoftext|>",
143
+ "model_max_length": 128000,
144
+ "pad_token": "<|endoftext|>",
145
+ "padding_side": "left",
146
+ "remove_space": false,
147
+ "tokenizer_class": "ChatGLM4Tokenizer"
148
+ }