Sympan commited on
Commit
6c38eb2
·
1 Parent(s): fb4c499

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 272.68 +/- 14.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efdf8fef1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efdf8fef250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efdf8fef2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efdf8fef370>", "_build": "<function ActorCriticPolicy._build at 0x7efdf8fef400>", "forward": "<function ActorCriticPolicy.forward at 0x7efdf8fef490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efdf8fef520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efdf8fef5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efdf8fef640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efdf8fef6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efdf8fef760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efdf8fef7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efdf8feb680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687365123042156379, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB2lhb6NfAO9XR48u4xRmLmyPmo+bThmOgAAgD8AAIA/2qWgvXpRYD4KQXQ9IueRvoq/zT2W+Ua9AAAAAAAAAACaPFO9hdzwPDfYADs5IS2+SX3tu82UsTsAAAAAAAAAAGaGF74LUo89S8RvPfNXar5HDVe8HLkhPAAAAAAAAAAAzaYWPD/9mD5z6tu98Glkvklck71iur69AAAAAAAAAAA6Uys+uZOPP/0q5T6zXuS+wXSRPoAlOz4AAAAAAAAAAJoQ2bzrANc+BXjrvYfgo74ZzNO9GkgYPQAAAAAAAAAAzWunvNovsD8iLy2/x1kJv56SkzxmwZo9AAAAAAAAAAAARL27Q7c9vNZCAz2wWA6+K9K5PRt07T4AAIA/AACAP/NmGj7l0Z0/i+7LPudg274l0ZY+J+SOPgAAAAAAAAAAM80dPNJalrvHmiK7Z47APFaS1rwm9aE9AACAPwAAgD8zHlO99uRaurOPG7qzLw210FVbux5DNzkAAIA/AACAP3Oyjb4DeDU/XjO9PSAyrb5reF2+10U2PgAAAAAAAAAAZoavu7hUtbtOAVi7TmwkPPObDL334BA9AACAPwAAgD8ANf68QzW2Pywwvr58Wr68hk+8OnBvgb0AAAAAAAAAADOpPb2iHqM+ev9GPi0Wfb4PMRc9MpupvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFoZVxCIDYCMAWyUTegDjAF0lEdAlr4NTHbRGHV9lChoBkdAcq5P3ztkWmgHTQ8BaAhHQJa+iRW912d1fZQoaAZHQHJhFkxyn1poB00VAWgIR0CWvt+Y+jdpdX2UKGgGR0BzJO9K28ZlaAdNFAFoCEdAlr8dw3o9tHV9lChoBkdAcmgtP557gWgHTYIBaAhHQJa/eiZfD1p1fZQoaAZHQHAZvKQq7RRoB0v3aAhHQJa/2DBdld11fZQoaAZHQHB61HOKO1hoB00MAWgIR0CWw2m3fAKwdX2UKGgGR0BxkrZnL7oCaAdNIwFoCEdAlsOjV2A5JnV9lChoBkdAc2G7PppvgmgHTRkBaAhHQJbDykLx7Rh1fZQoaAZHQG+a8RL9MsZoB00BAWgIR0CWw9A3T/hmdX2UKGgGR0BwgcRzzVc2aAdNRwFoCEdAlsQ0EC/47HV9lChoBkdAc1QtnPE872gHS9loCEdAlsRRt1p0wXV9lChoBkdAb/HvXsgMdGgHTQoBaAhHQJbEptxdY4h1fZQoaAZHQHDioChew9toB00MAWgIR0CWxR+gDifhdX2UKGgGR0AaAIRh+fAcaAdLyWgIR0CWxUcgyM1kdX2UKGgGR0BwtFTVDrquaAdNDwFoCEdAlsVOIqLCN3V9lChoBkdAcTVMbWEsa2gHTS8BaAhHQJbFfSThYNl1fZQoaAZHQHEu9r9ETg5oB0v+aAhHQJbF99Tgl4V1fZQoaAZHQHNYbpeNT99oB00fAWgIR0CWxhbGWD6FdX2UKGgGR0Bw8BGb1AZ9aAdNKAFoCEdAlsbFkQPI4nV9lChoBkdAcUVQpWmxdWgHS/JoCEdAlsbFuJk5InV9lChoBkdAcjpHWSU1RGgHTR4BaAhHQJbG/a11GLF1fZQoaAZHQHG0d52Qnx9oB0vfaAhHQJbJVEjPfKp1fZQoaAZHQHKia8+RoytoB0v5aAhHQJbKOFRHf/F1fZQoaAZHQHAnF1GLDQ9oB00AAWgIR0CWymrSmZVodX2UKGgGR0BwYPrAxi5NaAdNFwFoCEdAlsrUEcKgI3V9lChoBkdAbw4GQCCBgGgHTSMBaAhHQJbL+GIsRQJ1fZQoaAZHQHCcxMi8nNRoB00eAWgIR0CWzDO9WZJDdX2UKGgGR0BuzNsrNGExaAdNDQFoCEdAlsxoiosI3XV9lChoBkdAbs1tgKF7D2gHTS8BaAhHQJbNQg9vCMx1fZQoaAZHQHMHr6UJOWVoB01XAWgIR0CWzYCeVcD9dX2UKGgGR0BwmmneizsyaAdNCAFoCEdAls4Iv38GcHV9lChoBkdAcN3UFSsKcGgHTToBaAhHQJbOBcRlHz91fZQoaAZHQHGCPZyuIRBoB00JAWgIR0CWzhJK8L8adX2UKGgGR0Bt/tDF6zE8aAdNOgFoCEdAls58CxNZeXV9lChoBkdAcU8E2YOUdWgHTVgBaAhHQJbOjw3HaOB1fZQoaAZHQEbrsIE8q4JoB0vXaAhHQJbPauV5a/11fZQoaAZHQHELUjC53C9oB00/AWgIR0CWz4cOby6MdX2UKGgGR0By4OC7K7qZaAdL6GgIR0CW0JZ3LV4HdX2UKGgGR0BJNsdDIBBBaAdLx2gIR0CW0WUhmoR7dX2UKGgGR0BxqmIhyKekaAdNCAFoCEdAltHvI0ZWJnV9lChoBkdAbPIyKNyYHGgHTRoBaAhHQJbSFQj2SMd1fZQoaAZHQFJJj6vaDf5oB0vAaAhHQJbSHwkPczt1fZQoaAZHQHBcMzMzMzNoB0v9aAhHQJbi0Q+UyHp1fZQoaAZHQHL+XtKIznBoB00cAWgIR0CW40i5uqFRdX2UKGgGR0BF/zr3TNMXaAdL1WgIR0CW47V6u4gBdX2UKGgGR0Bw9HUz9CNTaAdL6WgIR0CW47R5kbxWdX2UKGgGR0BtsbyQPqcFaAdNAwFoCEdAluPhXXAdn3V9lChoBkdAcQnptrKvFGgHTQwBaAhHQJbkiuyNXHR1fZQoaAZHQG5iCed07r9oB00dAWgIR0CW5PoDxLCfdX2UKGgGR0BtgFk8RtgsaAdNEAFoCEdAluUgPEsJ6nV9lChoBkdAcNQWMS9M9WgHTQEBaAhHQJblzYf4h2Z1fZQoaAZHQHD/sr7O3UhoB00TAWgIR0CW5mTFVDKHdX2UKGgGR0BvCIxJul41aAdNFQFoCEdAlugJuIhyKnV9lChoBkdAckNFd9lVcWgHS/toCEdAlulmiQDFInV9lChoBkdAbI5FR51Ng2gHTSEBaAhHQJbp7+bVjI91fZQoaAZHQHE0vnnuAqdoB00VAWgIR0CW6kuhbnoxdX2UKGgGR0By6EP3BYV7aAdNAgFoCEdAluskuL74z3V9lChoBkdAcpkkTHsC1mgHTS8BaAhHQJbrp4lhPTJ1fZQoaAZHQHDaf0qYqoZoB0v9aAhHQJbspIFvAGl1fZQoaAZHQHFMZg9eQdVoB0vfaAhHQJbtMdzXBgx1fZQoaAZHQHM1CEtdzGRoB00iAWgIR0CW7TvMbFS9dX2UKGgGR0BvNJgiNbTuaAdL92gIR0CW7XzyBkI5dX2UKGgGR0Bx2qce8wpOaAdNLAFoCEdAlu40hzNliHV9lChoBkdAcEpQv6CUYGgHTRIBaAhHQJbwtPIn0Cl1fZQoaAZHQHEcdOM2m51oB00CAWgIR0CW8P6eXiR5dX2UKGgGR0BxFc2MsH0LaAdNMwFoCEdAlvD+zMRpUXV9lChoBkdAcf6AeaKDTWgHTQwBaAhHQJbzWJ+DvmZ1fZQoaAZHQHIcdtEXtShoB0vwaAhHQJb0VhmXgLt1fZQoaAZHQHHLvjGT9sJoB0viaAhHQJb1Ju76Hj91fZQoaAZHQHHUHVbzK9xoB00gAWgIR0CW9YVZcLSedX2UKGgGR0BeiqqCHymRaAdN6ANoCEdAlvW8JD3M6nV9lChoBkdAcClvUSZjQWgHTSMBaAhHQJb2IxagVXV1fZQoaAZHQHB2UoScslNoB0v4aAhHQJb3Ck+HJtB1fZQoaAZHQHLZga3qiXZoB0vcaAhHQJb3fwPRRdh1fZQoaAZHQHDcZb2USqVoB0v2aAhHQJb3g8+zMRp1fZQoaAZHQHGJcneBQN1oB00yAWgIR0CW9+Gx2SuAdX2UKGgGR0By0/GLk0aZaAdNJAFoCEdAlvlwwfyPMnV9lChoBkdAcmu1qWTouGgHTUkBaAhHQJb6OMdcSoR1fZQoaAZHQHHxZ4B3iaRoB0v+aAhHQJb6ngBLf1p1fZQoaAZHQG/m9Hc1wYNoB00NAWgIR0CW+wP1tfoidX2UKGgGR0Bxy95gPVd5aAdNMAFoCEdAlvu4kqtoz3V9lChoBkdAcnfqy4Wk8GgHTRUBaAhHQJb8qKwY+B91fZQoaAZHQG+HRfnfVI9oB00AAWgIR0CW/cHObAk+dX2UKGgGR0BxWRCD28IzaAdNGAFoCEdAlv5nbEgnt3V9lChoBkdAcJ+Hnlnyu2gHTSMBaAhHQJb+fGS6lLx1fZQoaAZHQHB4U5U96kZoB01BAWgIR0CW/tFVktmMdX2UKGgGR0BwXfEit7rtaAdNDQFoCEdAlv8ww9JSSHV9lChoBkdAcUKGt6ol2WgHTQwBaAhHQJb/fTZxrBV1fZQoaAZHQGu5D50r9VFoB00NAWgIR0CW/4OavzOHdX2UKGgGR0ByGE+V1Oj7aAdNUgFoCEdAlwB8uez2OHV9lChoBkdAcZWhDw6QvGgHTQcBaAhHQJcAyoOx0Mh1fZQoaAZHQG2LJF9a2WpoB008AWgIR0CXAQ5/9YOldX2UKGgGR0Bxz8RlHz6KaAdL8WgIR0CXAVgam4y5dX2UKGgGR0BulZ0CA+Y/aAdNBQFoCEdAlwF8afjCHnV9lChoBkdAcM+ERaouPGgHS/VoCEdAlwJ8GTs6aXV9lChoBkdAcnD94/u9e2gHTT8BaAhHQJcDtSNwR5F1fZQoaAZHQDBuzZ6D5CZoB0vdaAhHQJcDtD1Gsmx1fZQoaAZHQG3Yz6zmfXhoB00VAWgIR0CXBEiONo8IdX2UKGgGR0BxkGNxVAAyaAdL5WgIR0CXBG4EwFkhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 288, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84dc6690ba45ca9ae51c2b6e5afd92e6d5a6c062fa491dea2b7ae20106257db2
3
+ size 146719
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efdf8fef1c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efdf8fef250>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efdf8fef2e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efdf8fef370>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efdf8fef400>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efdf8fef490>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efdf8fef520>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efdf8fef5b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efdf8fef640>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efdf8fef6d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efdf8fef760>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efdf8fef7f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efdf8feb680>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687365123042156379,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB2lhb6NfAO9XR48u4xRmLmyPmo+bThmOgAAgD8AAIA/2qWgvXpRYD4KQXQ9IueRvoq/zT2W+Ua9AAAAAAAAAACaPFO9hdzwPDfYADs5IS2+SX3tu82UsTsAAAAAAAAAAGaGF74LUo89S8RvPfNXar5HDVe8HLkhPAAAAAAAAAAAzaYWPD/9mD5z6tu98Glkvklck71iur69AAAAAAAAAAA6Uys+uZOPP/0q5T6zXuS+wXSRPoAlOz4AAAAAAAAAAJoQ2bzrANc+BXjrvYfgo74ZzNO9GkgYPQAAAAAAAAAAzWunvNovsD8iLy2/x1kJv56SkzxmwZo9AAAAAAAAAAAARL27Q7c9vNZCAz2wWA6+K9K5PRt07T4AAIA/AACAP/NmGj7l0Z0/i+7LPudg274l0ZY+J+SOPgAAAAAAAAAAM80dPNJalrvHmiK7Z47APFaS1rwm9aE9AACAPwAAgD8zHlO99uRaurOPG7qzLw210FVbux5DNzkAAIA/AACAP3Oyjb4DeDU/XjO9PSAyrb5reF2+10U2PgAAAAAAAAAAZoavu7hUtbtOAVi7TmwkPPObDL334BA9AACAPwAAgD8ANf68QzW2Pywwvr58Wr68hk+8OnBvgb0AAAAAAAAAADOpPb2iHqM+ev9GPi0Wfb4PMRc9MpupvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFoZVxCIDYCMAWyUTegDjAF0lEdAlr4NTHbRGHV9lChoBkdAcq5P3ztkWmgHTQ8BaAhHQJa+iRW912d1fZQoaAZHQHJhFkxyn1poB00VAWgIR0CWvt+Y+jdpdX2UKGgGR0BzJO9K28ZlaAdNFAFoCEdAlr8dw3o9tHV9lChoBkdAcmgtP557gWgHTYIBaAhHQJa/eiZfD1p1fZQoaAZHQHAZvKQq7RRoB0v3aAhHQJa/2DBdld11fZQoaAZHQHB61HOKO1hoB00MAWgIR0CWw2m3fAKwdX2UKGgGR0BxkrZnL7oCaAdNIwFoCEdAlsOjV2A5JnV9lChoBkdAc2G7PppvgmgHTRkBaAhHQJbDykLx7Rh1fZQoaAZHQG+a8RL9MsZoB00BAWgIR0CWw9A3T/hmdX2UKGgGR0BwgcRzzVc2aAdNRwFoCEdAlsQ0EC/47HV9lChoBkdAc1QtnPE872gHS9loCEdAlsRRt1p0wXV9lChoBkdAb/HvXsgMdGgHTQoBaAhHQJbEptxdY4h1fZQoaAZHQHDioChew9toB00MAWgIR0CWxR+gDifhdX2UKGgGR0AaAIRh+fAcaAdLyWgIR0CWxUcgyM1kdX2UKGgGR0BwtFTVDrquaAdNDwFoCEdAlsVOIqLCN3V9lChoBkdAcTVMbWEsa2gHTS8BaAhHQJbFfSThYNl1fZQoaAZHQHEu9r9ETg5oB0v+aAhHQJbF99Tgl4V1fZQoaAZHQHNYbpeNT99oB00fAWgIR0CWxhbGWD6FdX2UKGgGR0Bw8BGb1AZ9aAdNKAFoCEdAlsbFkQPI4nV9lChoBkdAcUVQpWmxdWgHS/JoCEdAlsbFuJk5InV9lChoBkdAcjpHWSU1RGgHTR4BaAhHQJbG/a11GLF1fZQoaAZHQHG0d52Qnx9oB0vfaAhHQJbJVEjPfKp1fZQoaAZHQHKia8+RoytoB0v5aAhHQJbKOFRHf/F1fZQoaAZHQHAnF1GLDQ9oB00AAWgIR0CWymrSmZVodX2UKGgGR0BwYPrAxi5NaAdNFwFoCEdAlsrUEcKgI3V9lChoBkdAbw4GQCCBgGgHTSMBaAhHQJbL+GIsRQJ1fZQoaAZHQHCcxMi8nNRoB00eAWgIR0CWzDO9WZJDdX2UKGgGR0BuzNsrNGExaAdNDQFoCEdAlsxoiosI3XV9lChoBkdAbs1tgKF7D2gHTS8BaAhHQJbNQg9vCMx1fZQoaAZHQHMHr6UJOWVoB01XAWgIR0CWzYCeVcD9dX2UKGgGR0BwmmneizsyaAdNCAFoCEdAls4Iv38GcHV9lChoBkdAcN3UFSsKcGgHTToBaAhHQJbOBcRlHz91fZQoaAZHQHGCPZyuIRBoB00JAWgIR0CWzhJK8L8adX2UKGgGR0Bt/tDF6zE8aAdNOgFoCEdAls58CxNZeXV9lChoBkdAcU8E2YOUdWgHTVgBaAhHQJbOjw3HaOB1fZQoaAZHQEbrsIE8q4JoB0vXaAhHQJbPauV5a/11fZQoaAZHQHELUjC53C9oB00/AWgIR0CWz4cOby6MdX2UKGgGR0By4OC7K7qZaAdL6GgIR0CW0JZ3LV4HdX2UKGgGR0BJNsdDIBBBaAdLx2gIR0CW0WUhmoR7dX2UKGgGR0BxqmIhyKekaAdNCAFoCEdAltHvI0ZWJnV9lChoBkdAbPIyKNyYHGgHTRoBaAhHQJbSFQj2SMd1fZQoaAZHQFJJj6vaDf5oB0vAaAhHQJbSHwkPczt1fZQoaAZHQHBcMzMzMzNoB0v9aAhHQJbi0Q+UyHp1fZQoaAZHQHL+XtKIznBoB00cAWgIR0CW40i5uqFRdX2UKGgGR0BF/zr3TNMXaAdL1WgIR0CW47V6u4gBdX2UKGgGR0Bw9HUz9CNTaAdL6WgIR0CW47R5kbxWdX2UKGgGR0BtsbyQPqcFaAdNAwFoCEdAluPhXXAdn3V9lChoBkdAcQnptrKvFGgHTQwBaAhHQJbkiuyNXHR1fZQoaAZHQG5iCed07r9oB00dAWgIR0CW5PoDxLCfdX2UKGgGR0BtgFk8RtgsaAdNEAFoCEdAluUgPEsJ6nV9lChoBkdAcNQWMS9M9WgHTQEBaAhHQJblzYf4h2Z1fZQoaAZHQHD/sr7O3UhoB00TAWgIR0CW5mTFVDKHdX2UKGgGR0BvCIxJul41aAdNFQFoCEdAlugJuIhyKnV9lChoBkdAckNFd9lVcWgHS/toCEdAlulmiQDFInV9lChoBkdAbI5FR51Ng2gHTSEBaAhHQJbp7+bVjI91fZQoaAZHQHE0vnnuAqdoB00VAWgIR0CW6kuhbnoxdX2UKGgGR0By6EP3BYV7aAdNAgFoCEdAluskuL74z3V9lChoBkdAcpkkTHsC1mgHTS8BaAhHQJbrp4lhPTJ1fZQoaAZHQHDaf0qYqoZoB0v9aAhHQJbspIFvAGl1fZQoaAZHQHFMZg9eQdVoB0vfaAhHQJbtMdzXBgx1fZQoaAZHQHM1CEtdzGRoB00iAWgIR0CW7TvMbFS9dX2UKGgGR0BvNJgiNbTuaAdL92gIR0CW7XzyBkI5dX2UKGgGR0Bx2qce8wpOaAdNLAFoCEdAlu40hzNliHV9lChoBkdAcEpQv6CUYGgHTRIBaAhHQJbwtPIn0Cl1fZQoaAZHQHEcdOM2m51oB00CAWgIR0CW8P6eXiR5dX2UKGgGR0BxFc2MsH0LaAdNMwFoCEdAlvD+zMRpUXV9lChoBkdAcf6AeaKDTWgHTQwBaAhHQJbzWJ+DvmZ1fZQoaAZHQHIcdtEXtShoB0vwaAhHQJb0VhmXgLt1fZQoaAZHQHHLvjGT9sJoB0viaAhHQJb1Ju76Hj91fZQoaAZHQHHUHVbzK9xoB00gAWgIR0CW9YVZcLSedX2UKGgGR0BeiqqCHymRaAdN6ANoCEdAlvW8JD3M6nV9lChoBkdAcClvUSZjQWgHTSMBaAhHQJb2IxagVXV1fZQoaAZHQHB2UoScslNoB0v4aAhHQJb3Ck+HJtB1fZQoaAZHQHLZga3qiXZoB0vcaAhHQJb3fwPRRdh1fZQoaAZHQHDcZb2USqVoB0v2aAhHQJb3g8+zMRp1fZQoaAZHQHGJcneBQN1oB00yAWgIR0CW9+Gx2SuAdX2UKGgGR0By0/GLk0aZaAdNJAFoCEdAlvlwwfyPMnV9lChoBkdAcmu1qWTouGgHTUkBaAhHQJb6OMdcSoR1fZQoaAZHQHHxZ4B3iaRoB0v+aAhHQJb6ngBLf1p1fZQoaAZHQG/m9Hc1wYNoB00NAWgIR0CW+wP1tfoidX2UKGgGR0Bxy95gPVd5aAdNMAFoCEdAlvu4kqtoz3V9lChoBkdAcnfqy4Wk8GgHTRUBaAhHQJb8qKwY+B91fZQoaAZHQG+HRfnfVI9oB00AAWgIR0CW/cHObAk+dX2UKGgGR0BxWRCD28IzaAdNGAFoCEdAlv5nbEgnt3V9lChoBkdAcJ+Hnlnyu2gHTSMBaAhHQJb+fGS6lLx1fZQoaAZHQHB4U5U96kZoB01BAWgIR0CW/tFVktmMdX2UKGgGR0BwXfEit7rtaAdNDQFoCEdAlv8ww9JSSHV9lChoBkdAcUKGt6ol2WgHTQwBaAhHQJb/fTZxrBV1fZQoaAZHQGu5D50r9VFoB00NAWgIR0CW/4OavzOHdX2UKGgGR0ByGE+V1Oj7aAdNUgFoCEdAlwB8uez2OHV9lChoBkdAcZWhDw6QvGgHTQcBaAhHQJcAyoOx0Mh1fZQoaAZHQG2LJF9a2WpoB008AWgIR0CXAQ5/9YOldX2UKGgGR0Bxz8RlHz6KaAdL8WgIR0CXAVgam4y5dX2UKGgGR0BulZ0CA+Y/aAdNBQFoCEdAlwF8afjCHnV9lChoBkdAcM+ERaouPGgHS/VoCEdAlwJ8GTs6aXV9lChoBkdAcnD94/u9e2gHTT8BaAhHQJcDtSNwR5F1fZQoaAZHQDBuzZ6D5CZoB0vdaAhHQJcDtD1Gsmx1fZQoaAZHQG3Yz6zmfXhoB00VAWgIR0CXBEiONo8IdX2UKGgGR0BxkGNxVAAyaAdL5WgIR0CXBG4EwFkhdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 288,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90a802a56b1361ed9c6ea112d00594cedf14a82c8e78e16635fa88cfcf476cf5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2635eda9b2474c910158e13dced1aaaddf8be9292d616964cf09939aba12d6b
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (160 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.6808868027929, "std_reward": 14.78155166424525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-21T16:54:52.338144"}