File size: 7,233 Bytes
38dcd4c 04c9c5b 38dcd4c df26af2 4b37c7f 202436c 696204f cb71146 203be2b b3f3600 3880981 b3f3600 38dcd4c 041b028 38dcd4c 041b028 38dcd4c 041b028 38dcd4c 041b028 38dcd4c 996b234 38dcd4c 4d1fbd6 2923e41 38dcd4c 4d1fbd6 38dcd4c 2923e41 38dcd4c 4d1fbd6 38dcd4c 11d61c0 0122800 11d61c0 38dcd4c 4d1fbd6 cb71146 4d1fbd6 2923e41 f688400 38dcd4c f688400 2923e41 38dcd4c 2923e41 38dcd4c 2923e41 4d1fbd6 38dcd4c ea312db 731b15d ea312db 731b15d bbcfbc8 ea312db 5501946 7ef16c1 5501946 82e6edd 5501946 38dcd4c 0f04e2a 38dcd4c 0f04e2a 26e55fb 38dcd4c 4d1fbd6 38dcd4c 4d1fbd6 11d61c0 38dcd4c 26e55fb 38dcd4c 4d1fbd6 38dcd4c 4d1fbd6 38dcd4c f02a947 11d61c0 38dcd4c 4d1fbd6 38dcd4c 11d61c0 7e39a07 38dcd4c 4d1fbd6 38dcd4c 4d1fbd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
library_name: peft
base_model: TheBloke/Llama-2-7b-Chat-GPTQ
pipeline_tag: text-generation
inference: false
license: openrail
language:
- en
datasets:
- flytech/python-codes-25k
co2_eq_emissions:
emissions: 1190
source: >-
Quantifying the Carbon Emissions of Machine Learning
https://mlco2.github.io/impact#compute
training_type: finetuning
hardware_used: 1 P100 16GB GPU
widget:
- text: hello this is an example
tags:
- text2code
- LoRA
- GPTQ
- Llama-2-7B-Chat
- text2python
- instruction2code
- nl2code
- python
---
# Llama-2-7b-Chat-GPTQ fine-tuned on PYTHON-CODES-25K
Generate Python code that accomplishes the task instructed.
## LoRA Adpater Head
### Description
Parameter Efficient Finetuning a 4bit quantized Llama-2-7b-Chat on flytech/python-codes-25k dataset.
- **Language(s) (NLP):** English
- **License:** openrail
- **Qunatization:** GPTQ 4bit
- **PEFT:** LoRA
- **Finetuned from model [TheBloke/Llama-2-7b-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GPTQ)**
- **Dataset:** [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k)
## Intended uses & limitations
Addressing the efficay of Quantization and PEFT. Implemented as a personal Project.
### How to use
```
The quantized model is finetuned as PEFT. We have the trained Adapter.
Merging LoRA adapater with GPTQ quantized model is not yet supported.
So instead of loading a single finetuned model, we need to load the base
model and merge the finetuned adapter on top.
```
```python
instruction = """"Help me set up my daily to-do list!""""
```
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM,AutoTokenizer
config = PeftConfig.from_pretrained("SwastikM/Llama-2-7B-Chat-text2code") #PEFT Config
model = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GPTQ",device_map='auto') #Loading the Base Model
model = PeftModel.from_pretrained(model, "SwastikM/Llama-2-7B-Chat-text2code") #Combining Trained Adapter with Base Model
tokenizer = AutoTokenizer.from_pretrained("SwastikM/Llama-2-7B-Chat-text2code")
inputs = tokenizer(instruction, return_tensors="pt").input_ids.to('cuda')
outputs = model.generate(inputs, max_new_tokens=500, do_sample=False, num_beams=1)
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(code)
```
### A Test Example
```python
User_Prompt = """Write a Python program to implement K-Means clustering. The program should take two mandatory arguments, k and data, where k is the number of clusters and data is a 2D array containing the data points k = 3
data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]"""
inputs = tokenizer(User_Prompt, return_tensors="pt").input_ids.to('cuda')
outputs = model.generate(inputs, max_new_tokens=500, do_sample=False, num_beams=1)
python_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Generated Output:",python_code)
>>>
```
``````
Generated Output:Write a Python program to implement K-Means clustering. The program should take two mandatory arguments, k and data, where k is the number of clusters and data is a 2D array containing the data points k = 3
data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]] Ready for action! Let's do this! ```python
import numpy as np
def kmeans(data, k):
# Initialize the centroids
centroids = np.random.rand(k, 2)
# Initialize the cluster assignments
cluster_assignments = np.zeros(data.shape[0], dtype=int)
# Iterate through the data points
for i in range(data.shape[0]):
# Calculate the distance between the current data point and each of the centroids
distances = np.linalg.norm(data[i] - centroids)
# Assign the data point to the closest centroid
cluster_assignments[i] = np.argmin(distances)
return cluster_assignments
```
This program takes two mandatory arguments, `k` and `data`, where `k` is the number of clusters and `data` is a 2D array containing the data points. The program initializes the centroids randomly and then iterates through the data points to calculate the distance between each data point and each of the centroids. The program then assigns each data point to the closest centroid based on the calculated distance. Finally, the program returns the cluster assignments for each data point.
Note that this program uses the Euclidean distance to calculate the distance between the data points and the centroids. You can change the distance metric if needed.
Also, this program assumes that the data points are 2D. If the data points are 3D or higher, you will need to modify the program accordingly.
I hope this helps! Let me know if you have any questions.
```python
# Example usage
data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
k = 3
cluster_assignments = kmeans(data, k)
print(cluster_assignments)
```
This will output the cluster assignments for each data point. The output will be a list of integers, where each integer represents the cluster assignment for that data point. For example, if the data points are
---------------------------------------------------------------------
``````
## Size Comparison
The table shows comparison VRAM requirements for loading and training
of FP16 Base Model and 4bit GPTQ quantized model with PEFT.
The value for base model referenced from [Model Memory Calculator](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator)
from HuggingFace
| Model | Total Size | Training Using Adam |
| ------------------------|-------------| --------------------|
| Base Model | 12.37 GB | 49.48 GB |
| 4bitQuantized+PEFT | 3.90 GB | 11 GB |
## Training Details
### Training Data
****Dataset:****[gretelai/synthetic_text_to_sql](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
Trained on `instruction` column of 20,000 randomly shuffled data.
### Training Procedure
HuggingFace Accelerate with Training Loop.
#### Training Hyperparameters
- **Optimizer:** AdamW
- **lr:** 2e-5
- **decay:** linear
- **batch_size:** 4
- **gradient_accumulation_steps:** 8
- **global_step:** 625
LoraConfig
- ***r:*** 8
- ***lora_alpha:*** 32
- ***target_modules:*** ["k_proj","o_proj","q_proj","v_proj"]
- ***lora_dropout:*** 0.05
#### Hardware
- **GPU:** P100
## Additional Information
- ***Github:*** [Repository](https://github.com/swastikmaiti/Llama-2-7B-Chat-PEFT.git)
- ***Intro to quantization:*** [Blog](https://huggingface.co/blog/merve/quantization)
- ***Emergent Feature:*** [Academic](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features)
- ***GPTQ Paper:*** [GPTQ](https://arxiv.org/pdf/2210.17323)
- ***BITSANDBYTES and further*** [LLM.int8()](https://arxiv.org/pdf/2208.07339)
## Acknowledgment
Thanks to [@AMerve Noyan](https://huggingface.co/blog/merve/quantization) for precise intro.
Thanks to [@HuggungFace Team](https://huggingface.co/blog/gptq-integration#fine-tune-quantized-models-with-peft) for the [notebook](https://colab.research.google.com/drive/1_TIrmuKOFhuRRiTWN94iLKUFu6ZX4ceb?usp=sharing) on GPTQ.
## Model Card Authors
Swastik Maiti |