SuperSecureHuman commited on
Commit
605ac64
·
unverified ·
1 Parent(s): 136cbb9

Upload score 300 trained bipedal walker

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 302.94 +/- 1.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: BipedalWalker-v3
20
+ type: BipedalWalker-v3
21
+ ---
22
+
23
+ # **TD3** Agent playing **BipedalWalker-v3**
24
+ This is a trained model of a **TD3** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
TD3_BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9724a91c49ea624da398d0627d60be5764e9fe1b37e88d999feecfce751261db
3
+ size 6384610
TD3_BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
TD3_BipedalWalker-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:023cd47fe7f3fc966f519e0dda357dace919c8211efe2f7e95909b6086627d90
3
+ size 1055361
TD3_BipedalWalker-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c669f9383b41a3b8727ecf0c51cd4233b8a9c363dc36aef0a1908b679c433558
3
+ size 2121629
TD3_BipedalWalker-v3/data ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fe9b1522680>",
8
+ "_build": "<function TD3Policy._build at 0x7fe9b1522710>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fe9b15227a0>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fe9b1522830>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fe9b15228c0>",
12
+ "forward": "<function TD3Policy.forward at 0x7fe9b1522950>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fe9b15229e0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fe9b1522a70>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7fe9b150ab70>"
17
+ },
18
+ "verbose": 0,
19
+ "policy_kwargs": {},
20
+ "observation_space": {
21
+ ":type:": "<class 'gym.spaces.box.Box'>",
22
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
23
+ "dtype": "float32",
24
+ "_shape": [
25
+ 24
26
+ ],
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
30
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
31
+ "_np_random": null
32
+ },
33
+ "action_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWV/wsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAA1b84QlBdAx35aZIrNuvT7C0YASk4YBlTudiBx1H81L9aYyyuHuEuJXed3sWjuCOFhb5M/M+IjAd83GzDRYl32ZdVoaS95VrfO8433y0U0tI0Tg5YTjeSE+9jKFr9uMkiC+Zj5WW9pAVgMTdOfh8HUAQWJN6qN1VukHu2trGNnNUzLJCUGBnj+M8x4ZEohGd6mrC2OPDX3xr3duiRUILzxNwmYWK0731DZZQ8bM4dttN+6+jZkQPGbt0hacy38xWsg9J4AwwOFLx9Lek4koh3mgItAfAQ0C5RIuwiPNC3+Jo2V4b9PPsOKzDhHHPJbcjtUt/5f4ZKMVWy2Ljxi66kwGzmK9GRPZCbQGa6i8wVQxEGBJzEj9q2C2jKBCU+5wYbYkrIWbWO0viPL+nnwmlqpBL0G7cvvW5O9Ygo4DQRoaED1nWyVjRe7DMlGqcrM4dcYrnl//g/zFm8Fo5z7jDUZC7uwH8528mnpcNrWV+ODp9OqQ0LMvmBNpAPtaaQ5FMw8bidS9hZCAnDmqwsz5KefbqKE/mRUr5TiCasxXrpqG1P85ZaX+QK/ZS0MaTj2cMXBdXO6efmirMi5PtQJ6/pEIk1PSUxLenWsUE9hmI0LEtUnFmttHbFDYWTmfOVtSyBdAOjrfq+xS+0588yRLEEJj6RrqIuEvtL3LS5/40dhnl3JbAkv7+Dhy3Pj55DF3JzJvuASyufuItnJng6t9kpJio4+FMqH+iCQmX30JEudOKvd+uzmvpsMogthhKWS4zld90lrDaFtg0vc1OGfnqAbeueUvbVl0zV+iiee/PVMdaJtpQereBfw3GHXQ5fCXzLocJaYX0KLXDL3Vgh5obIdoN9Rbch5rmmRu1tev4095twNyEahOxBq0nPt8eEfpGupqfVENYoAoNaJqvjv5upjhGaRK4v5GY+lPNL0abw9TG+WW3gTsO/ZpDPu8Sf4GwZJ9wP4JG5O0waDdCOlFn4JTA+YFBVPO6P0VBKG+WX/NPN1VcfL7eKV3f1CVvfMO48s4xNLnQUle4cKQY5botSr1/d0NOP9Ytu0EGFIwYTEfh4V9Bnb+XXlmTRtvXBC3+TloHBSzhZm3Yd01dV/m6jgE5q3oR+y6QBT3IsgIuHoROFHPm+UlQKjAafM6u0SkQnROqWZ6ELM5Ihd1wj28B/hRyJQ36n4sBgPy7j5wIWFdcz43IE+UM/Dm9oiJ+6zCiwlHy1GScdeAp6AifGLiHuACN7L9Dq/rp9VcOHFQWjqPKQETNos3GJESxgjVpqDcnzUyE36WNPxN7jrysO1WlDLqr+OLvG9af22YsQDvZd5hIcE7vRlwK2Q9jBUz2ARWUrwFpeTH/C/NJXdimsaLC+uCDeE6V15zI32zVjBYuS2aBpoQDGBv4L5JoSQJdfGCrCFwe8hs3lFAFtbVUr2p8bD+o8niGTZ09vwMHfHtNtpdojvgYWAKLQkt9Om0WZojTovzOZTj8qko7GEK8KolOePlwi1ouTxnP6of9I3js9Th6iVENTN7tdXH0mVqmPS+TJsNpuA1yBdRQSc2h12DI1kYF3uLUjcDfoqMW478dKoj+hGtL7Qt1mGb8VFMzJcljWYaCGyjpGelA5E1dFf2ejZtCmgc+L01FagD9rQHKfaZLOf7hkQxoKZVh+QXiXN255loY4HIDkWKrNqsyZKAJn9hzLuV/C3ZBtvN8UOKpV4PmA99jZIEOGon+fmJPbIcylAh/shpo37OvOITX0Wd0FnucTwOzXAx0oxMwLlaCWx0CxZ+V6/5DQYVrkce+d8nz5ILvrfhwKreYe9XF/SjQWApcnLfbp13nyI2OgWoTHuWlWMk+rVsexi7tlMlXJobFiZ52dldvwoyVJo6iKuDS9zyOdpM0q4kgzBBlf/xF/D6/NF3COVbGg0UTJ6oYIrf6mElTNeCAWeNG3LaGiJA4gjHeMy+8Ksix7B0DQevjRMYIZXevZDj2ZLf4xlD9XEAtSschx1Bf06bP8C28pZXT+MyVa2raaR4ExbMXsKYSH3YvJQQniSLhqP7czOZHZwcapPdOBo46g/T6tqLTfVRUxbtJucwDAJsstFvv6KkD9u1mRb/g4Orxx1J0LFnXbuap6RQklxhSAUpQ0WoTlpA06jIVAvrZw/2g5O1/FpjQQdMoKo8xSEGbzkb57UgZiow/AHy2f2RGl3HPiHLw3gbM2JOgt//cPsTF7wpMHQU2kI1td7ujAc24LwpRKkVC7TWxPFVqVc7+XXonDJFX2nUcqTEhcXUshdEkvhWExLVUeZCL+CUIjk+W8Ggar0e8xz90OUqm7ML9tSi7aLcMJDX1439+N5xDw5Sna4eb/SU+O/rfv0Fh2gj/0cMvZ71AjYkmlNc7YLzkzRjiviGM+yED5gdXsM353IDt+YJeRgpSlN1WIzJ/kExMhIo57JMt3LS6OcHkTQOPP86Y9nUpextDD1c/34DLSLnlTF5AFBxvEmA6WkruAdBNin2B2JKR5R8Sm3tJ/yn8qDdm7kakBz3vGNHEFnvLGrPM3Q2Kx7sgBBcd0DW3mdU6xjMZaZl+RmOBsX1wPRwlqf81RF3eS+W9mmiK5/zpCTFlWywaPGOl0W/l0AuEYUAJbacu5DRsd517qoRVzsBd9tjhPMSPVDWHguPTUmkwm7H+XoAjSL8Jim8KQuZz3dxPHZPSzKTaUgCWashVTdJ/lphUSFx6npdphKslz8eunSdfWWw2GfnnhK+MdNdPqutiJR0GYpoj+ESp6yDC31YPHzcFfSr0FOGk4yh/cQQEJk9ekGgAkDHQvxCz7hhbue6Ff3XxP4efngWxA8Uvybu6J24I55HZB3vWFzl2NTQAp5exDS2Q24TnzPIbWvzKR06Idr5vT9sj8hug1ioLtHrjJD6OmKa0u78nbvkzO4rt2m0/cW5wM7DmxZaBAHRmmMZgwo+4qBb5WRLFxaBJYumteAXdb/pG2ApTem/OMxZUSp4YN6e/o9Q6WKopjcqFetFpgpS1wC/p2AwoG6hudW5GJElmiVOev9Xu+D+gfLURD0ShieNEBxyI0aEbWUOWlQZFgate9dOjQoG03TYYQrHUeRmIjrDBXyk50Bduq4Rf/b34unO326oM2QfhVx793w6YrkK/r1xsKR3C2JVfDIRcK9ZK+BCRp2mmkS74b4KkfIHk2I2+84KZd1MT8B/O+Lbt3i3ETlED5G8RrXSqH2nbhPchbJswRmm6E0toYOAP7veM0+ilSWbjrsXkoXR4LVtInBBbltFGdi5Y3pb+4H/Kx667XZTaA4b6X9mYwRRt65Hp3LhQedCVb7O59lmBzaSG+AY8/A+Nw5jF+lGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTZABdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 4
39
+ ],
40
+ "low": "[-1. -1. -1. -1.]",
41
+ "high": "[1. 1. 1. 1.]",
42
+ "bounded_below": "[ True True True True]",
43
+ "bounded_above": "[ True True True True]",
44
+ "_np_random": "RandomState(MT19937)"
45
+ },
46
+ "n_envs": 32,
47
+ "num_timesteps": 29760000,
48
+ "_total_timesteps": 50000000,
49
+ "_num_timesteps_at_start": 0,
50
+ "seed": null,
51
+ "action_noise": null,
52
+ "start_time": 1651891393.0083017,
53
+ "learning_rate": 0.0001,
54
+ "tensorboard_log": "model_log/",
55
+ "lr_schedule": {
56
+ ":type:": "<class 'function'>",
57
+ ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
58
+ },
59
+ "_last_obs": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAN2gGz8Mu668532vPqQnsLpMFqW++APJPvC0bD5T7oy9AAAAAC6p+r3Aouk+dFZvP6uqqrIAAAAAA3zqPrgl7T6Y5+4+cdr3PuMiBD8xFxI/JvQqPwA4Uj8AAIA/AACAPwyjAD+AuFa8bDTqPpLfar3A8N++jBpJPxgQpT4AAIC/AAAAADF2Vb4oZlU/kb5oP6uqqrMAAAAAUCrtPnam8D7mRvk+GgQDPyCGDD/QqRw/4DU3P8bnYT8AAIA/AACAPzhGhD1kkSM9asGcPO15QzzusJw+//9/vzC+Sj0BAIA/AAAAAK4Ezz4yjMy94Ct4PvvU0DwAAIA/fNrlPrt26D53mfA+FET/Pp0/Cz8MEh0/tuI4P7v5Zj8AAIA/AACAP0otHz9aDHO9yvq7Pt+oGr2r/bi++/9/Pxgymz6czgk/AAAAANponbyulPw+4uhtPwAAgDIAAAAAgavnPh486j5pHvA+fyz7PpB2Bj8CrxU/RUYrPwoqUT8AAIA/AACAP1U/OT/lVDs4wJb8PqyzZDyP1kG/K7Z8PwirKz8AAIC/AAAAAFw5pb4IvV2/Pd9uPwAAAAAAAAAA18XmPlu05j5Ux+4+Dm34PsCEBj9wqhg/tQEzP0RdXz8AAIA/AACAP5PQDT9xyvC8PkflPh81lr3Siga/AgCAP1rlnz6VfA++AAAAAHpM3b05wOM9BTNvP6uqqjMAAAAAAADkPha95z500PE+wnMAP+cMDz+eLCI/0a0+P3Sibj8AAIA/AACAP7QfGj96tV89EwMJP7/SZzuAKUm/sOyuv/rtKj8BAIA/AAAAAOhY3buiMm6+RU1vPwAAAAAAAAAACZLoPmcD7T6DZfY+d0oFP8huFT+kaSw/ZuNLPwAAgD8AAIA/AACAP+EDhT1P+iM9E9uYPAZIQjwqmpw+AACAvwAWTj0BAIA/AAAAAGSRzj4qbc29oK93Pks/qjwAAIA//NjlPjZ16D7ll/A+akL/PrQ+Cz8FER0/geE4Pzr4Zj8AAIA/AACAPyroWD+AkLO9Y0BTPlaO5jtHozW/epjoPkAGxT487bu9AACAPw7I7T72WSg/yNp2PwEAgD8AAAAAVfzhPlWN5D4Gjew+dfj6PsTnCD9sbRo/dRE1P4QAXj8AAIA/AACAPxDNED/MXy88YjrdPlFz4T3YLAK/TUiZv6Jfvz6TZ4A/AACAP1W8Oj4Ysdk+J1xvP6sKl7gAAAAAO6PjPkU/5z5zqe8+F77/PlcjCz8aMB4/6hVAPzPsbz8AAIA/AACAPytqST/aqF89NJbtPimcvz07VDy/uv60vxDwIj8AAIA/AAAAAJ6Cob2KvUm/vT5vPwAAgDMAAAAAlV3pPrY55z6KKus+XoD5PuTWBD+ykBI/VuYpPxowWj8AAIA/AACAPwObFT9/B4O8wij0Pl8Jp7t0dvO+CloRv+LZnj4BUaI+AACAP603M70Qi2Q+Bq5cP/3/fz8AAAAAzzDgPpNE4j4NgOs+eBv7PlA5CT8lNRs/fp41P2EsXz8AAIA/AACAPxGfIj+MMmU9BBoUP3hmQD0Z0Tq/XIa1vyjTAD8BAIA/AACAP3KohT3Uqi2/a1htPwAAALQAAAAAD+HfPppk4D5lgOU+b7HwPlBMAj94lxI/gaoqP6tPVD8AAIA/AACAP/mvID8opB+7WbG0PoVSjb1p/wS/xJCaPeCAJj/NFSK/AACAP6+NdL4AAIA/x31AP7t7bb8AAAAAGTjtPnWW7j5GWPc+e4sDP/51Ej8JOCc/H6ZDPyRLbT8AAIA/AACAP/2nJz+dBbc6/fjZPonc1bmSnzO//v9/P8Sgvj77gqW/AAAAAOag6r38PD+/a09tPwAAAAAAAAAAuZbcPpgQ3j6iHec+cmz2PhTdBz/V6x4/vbhGP4ixez8AAIA/AACAP0DoID/OGCE9AngBP480hD29vTm/oymiv7q5DT8AAIA/AACAP22iQj7S6ga/X31oPwAAgLMAAAAAPqXhPiQQ4z5KUuk+Plr1PtwtBD/i8BM/AUIuPxdKWz8AAIA/AACAP372Ej97UYW9xgKyPjaee73C/KC+flUWP2weLj41Lr2+AACAPxKZsz3k+2o/9bxuP1WenLwAAAAA/wHgPkOh4j6yWuk+r471PqLfBT85OBc/PD01PxzeZT8AAIA/AACAPzW6XD8/yLI8awSZPrpd4TuM9Em/Uk3HPuZ6mz6op0O+AAAAANIahD1OTGS/iHFvPwAAAAAAAAAAbD3kPvrU5j4X6e4+WXn9PmBFCj/H9xs/t3Y3P+E9ZT8AAIA/AACAPw+pHj9vsyq9pzCYPr/1m7y/wIO+XOtzPcBmvj3Jo8S9AACAPzQ9xD6UnGQ//1VvPwAAAAAAAAAApqndPhUu4D6ZBug+ayv2PlJJBj/bexc/69MzP5rRXj8AAIA/AACAP9UdPD/FswS9ck8BP2/S+byWJ/6+ZE13PyRImT5FLGK+AAAAAHJxlr60jTQ+MI5rP6uqqrIAAAAAA/bkPruX5z6pquw+w4/5Pp7vBz9vmBc/7RsuP9H9Uj8AAIA/AACAP5R3DT9LqJ48od8VP1wCMzyxJVG/AAAgM/okIz/NLA89AAAAANOvJj0AAIC/Jc1uP1VVVbQAAAAAvy3kPh4z7T4CLPs+X4YIP6yiFj/2kSo/zxpIP0YzcD8AAIA/AACAP9wwAz+dUP278HwJP3N4p73clp++Nr4aPmlIAj9XFJ8+AAAAAH7kpr0XxE4/5FZvP6uqKjMAAAAA88bxPk2V9T4k0v0+l9UFP9JZDz+mFR4/Liw5P1eZYz8AAIA/AACAPyHuED/rhYA9H2/KPtHkqz3JGDq/8v+zvyAGRz///38/AAAAAJ3aXz4BAIC/4UlvP6uqKrMAAAAAhaLsPhPG6j51YO4+xa34PhobBj8fPBY/gKsyP1hCYT8AAIA/AACAP86wLz9hqzK8f0HjPufJhL0S0eS+IMWyPv6u/z5V0Yy+AAAAAFdOEb5WNVA/Z0pgP0t6zr0AAAAAfy3rPi8R7z70Yfc+bnACP6QdDT/CrBw/Uo03P93SaD8AAIA/AACAP7kf+D4Bnwe91ROxPnrFuzxS4gG//sx/P0A8xj6gppg+AAAAAKpZibxtUoA/fElEP3gBt78AAIA/73vgPj1b4z45dOw+qkz+PpjuDD8jTyE/cC0/P1UPcD8AAIA/AACAP3AIDD/sgDc9CTkNP9HUjLxzkky/AADgtA1Wbz8AAAAAAAAAAGBIlDr+/3+/6TlvP1VV1TQAAAAApKbnPl/m6D5a2+8+ud78PqO3CD8P4Bo/eX03PyNGXT8AAIA/AACAP4FPPz+39Rw8ptP5Pv2AKT3WWRy/1zdmP/Cq/z0QUmq/AAAAAK8O8L7w+r88CEpvPwAAEDQAAAAAl7voPnQ07T70rPY+VY0DP9uODj++Oh8/rtw1P9g3Wj8AAIA/AACAPyKYHT9BvME8jEDrPoY/QD3nZje/kRRVPwFdEz8AAIC/AAAAAKQQ1r6EsL6+BThvP6uqKrMAAIA/5YztPk9L8D6cAfg+bSADPzNlDT9FHCA/esBAP9ffcD8AAIA/AACAP5Q02D4UVvM8ftoWPwF1RTvFsEC/2veEv9K3SD8AAIA/AAAAAMIk7T2eOHm/w2RuPwAAAAAAAAAA25ngPtUm4z46hO4+Sj8AP29FDT8i2h8/o8c9P2MIaz8AAIA/AACAP04kOD8m2x49ZrHNPha1kj2WUiq/8DGwv6LmFz/3eIA/AACAP9qxsT0YP868yEVvPwCwArkAAAAAZNXnPuc65j4xm+0+D2X6PuyyBz9NbRc/QAoyPyTNYD8AAIA/AACAPzQ2SD9yrRa9muHJPoVehb3CuOi+EK2LP+CqYj3YqTe/AAAAAJeJGr79ZaI+nfVsP1VVVTMAAAAAr0jXPnXo1z7Jct0+eMPrPgLVAj/KuRY/cpcyPx/+WT8AAIA/AACAP+0v+T7ldQu9HA4DP7p6ir2uigi/AgCAP5SbvT4AAIC/AAAAAHsSHr7yOB6+KEttP6uqKrMAAAAAXL/iPpNS5T4kmPE+3ccCPypNEj+hLic/G9ZEP+a1dD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAEpcHj/Wobm8bw+tPl3NMTzKH7W+/NNSP/jCdD4AAIC/AAAAAOu4Ir6q1ec+e1ZvP6uqqjIAAAAArojqPogy7T6D+e8+I4/4PhuQBD83ThI/rDkrPzf1UT8AAIA/AACAP2xUAj8tFsK8c6jmPnpuGb2mXP++LdGBP4A74D4AAIC/AAAAAC3GjL6T020/SZdoP6uqKrQAAAAA/oTuPrPX8T6BDfs+XCMEPySbDT8eux0/TWE4Px1+Yz8AAIA/AACAP5/6Nj0k7jg9xjuDPCBhgjyWxsY+euI2vuDUm72V6Eu/AAAAAEgQ0T7WC8K+3MR9PsXYnj0AAIA/pYflPvMi6D7BQvA+Fej+Pm4NCz9w2Rw/FKA4P32mZj8AAIA/AACAP4rIJj9W2wy9TfLAPkAXo7woqeC+AwCAP8AkbT6l8YG9AAAAAD3bcL1wbZY8iuxtPwAAgDMAAAAAVaLoPtY36z4QlfE+LsH8PgthBz80VxY/k3EsPwQYUj8AAIA/AACAPxpDOT86w4w8cUACP5P5+zzTvFW/AACAsmGVST/9EsI+AAAAAN7Kgb7//3+/aspuP6uqqjQAAAAAyTbnPgKB5j7icu4+UiD5PodlBj+GSBg/O/MyPwUIXz8AAIA/AACAP1iXET+vhBO72aDqPr/HZr3vqxq/AACAP8wSpj7bL1q/AAAAAIbS772tPMK+jjdvP6uqqrIAAAAAlb3lPrEZ6T48sfM+DkYBP7jtDz9hiSM/+DhAP2ZIcD8AAIA/AACAP+QlEz8kPho9uJAHP+lscDzJ8iy/lTu9v7pvCz+CMYA/AACAP4wRQTxcCqs+s05vP6uqOLgAAAAA+5/nPgHn7D4xTvU+V6QEPwaLFD+MFSw/JIpLPwAAgD8AAIA/AACAP/5EOD2DgTk9WKJ/PLFxgjzusMY+ytU5vvAumr093km/AAAAAMyG0D43iMO+CFt+PhfsmT0AAIA/bYblPrch6D56QfA+uub+PrEMCz+b2Bw/GZ84P0OlZj8AAIA/AACAPwodZD9N2Zm9FylIPqY6X7zz5j6/XDP3Pp50yj7VZ26+AACAPyIm0z5Sk6I+BAFYPwEAgD8AAAAAA9zhPqVs5D4xa+w+kNT6Pi/UCD9WVxo/GBA1P5jkXT8AAIA/AACAP19xDz/6m9g73YrVPhvIuT1kZdK++gR6v4SdfT7nIT0/AACAPx3qFz48Qh0/tlVvPwAAAAAAAAAAvpzgPjuV5D5pmOw+QrL8PtuLCT8l4xs/ePc9Py1dbT8AAIA/AACAP0l1Qj82IAs9dxjqPvrI1j0NLh+/sKqzv+YZAz9xdYA/AAAAAFobhLxGZmy+LUdvP6vMyrgAAAAAZzHoPuLj5T4Kguk+6AH3PqosBD+SkBE/mx8oPy7AVj8AAIA/AACAP2CsFz9869W80JbnPhphc7uycOC+a/W6Pqg6iD673Ra/AACAP62geL3+/38/yG49Pz9qKr8AAAAATnXgPrWJ4j6rXOs+RhT7PolSCT+vPRs/Dxc2P9ZRXz8AAIA/AACAPzN9Gz89PRo9OBcTPyRgaD08ix2/7kXCvxpzwT7Li4A/AACAP+Io9D06hcm9M2ZtP6va07gAAAAAAL7ePrX53z5UCuU+svfvPgHBAT/UABI/KBYqPykIUz8AAIA/AACAPzACIT+Shys64x63Ptr6Q732bAa/e1FCvhWaHz8kY5U/AAAAACQIo74F0kY/+KZcP9FuHb8AAAAAjFvvPig08D6lGPk+ejEEP/k7Ez/pVig/IzVFP6FKbz8AAIA/AACAPyyEJz9+d5o8NEDePmG8nDyWiUe/j983PwzrBD/psZq/AAAAAL00Yb0AAIC/MRdtPwAAAAAAAAAA5k3dPglU3j7Rv+Y+X3v2PgVnBz9JMR4/c/VFP3unez8AAIA/AACAP9PjGz/BnY08b2gAP3galT3Cix+/RYSnv3j/2z5UWIE/AACAP0mtbT7G2t09n4FoP1X1krkAAAAAAhbgPr/b4T4fHOg+FUP0PhSDAz8a2BI/4AAtP2l2WD8AAIA/AACAP5xQGz9hl0K9RpuwPnrhTr0siL6+lCldP/QpVD5j+YS/AACAP4w1ZzzWMfU+tk1vPwAAADMAAAAAz2ThPpcz5D7WSus+5Er3PvzGBj9GRBg/yGk2P5A8Zz8AAIA/AACAP/nvWT/R+Ac9o2ScPn3MyzzbzlG/AACgswx0pj7NskQ+AAAAANEjCz7+/3+/ekVvPwAAADQAAAAA9hPkPgur5j6xve4+Tkv9PkIsCj9y2xs/FGw3P+VIZT8AAIA/AACAPyD8Iz/vDIG9SoGQPgHrTr2ntIa+0FHGPiA64D0BqKO+AACAP5qrnz78/38/bWxvP1VVVbQAAAAAuCfePpWt4D6Qiug+bbf2PrKVBj9Szxc/V0Y0P+xoXz8AAIA/AACAP3RGQD/0cEu8NnQDP2TFbLxjnBK/AQCAP7DfpD4z9Vy/AAAAAG23nb7cYDO+u5BrPwAAgDMAAAAAVKPlPqKb6D4uH+4+VqP6PpNlCD8kaRg/pQwvPzNRVD8AAIA/AACAP83/Cj+65D09oHAbPzSymjwQIlG/Ejygv6PYIT8AAIA/AAAAAALg9j10OH2/1LBuPwAAAAAAAAAA2QviPkaY6z5ob/k+EeAHP5Y2Fj/HgCo/ohtIP0LscD8AAIA/AACAP3MvBD9PYX27umAKP8ZYer0wo6W+6OfKvcwz8T4jzWI/AAAAAC+SFb4Omjc/kFZvP6uqKjMAAAAA4nHzPpyV9z5Q+f8+XRUHPzb4ED8ilx8/tcQ6P/3NZT8AAIA/AACAPwbxCD+6Hls9+ZzJPoZmxz1zRR2/xb+4v7iFJz///38/AAAAAOCZmD6UJja/k1FvP6uqKjMAAAAA0V3rPoyX6T7/GO0+t+X2PpQqBT88ohQ/Su4wP09BXj8AAIA/AACAP/YYMT9tkhm7fA3kPnuISL1KLvO+qNoaP2oGCD8R2ZK/AACAP4esU757HhE/IjJjP8vfQT4AAAAAj6fsPn5n8D4bOfk+nXkDP4o2Dj/qFR4/kZs4P/Etaj8AAIA/AACAP4tRAD+/nG28zNHlPuTIur1VuRW//v9/P1RisD7QXFy/AAAAAJr3xL1iQtC+n1lvPwAAAAAAAAAA4v7fPoS74j75g+s+8z/9PlBcDD9j3iA/5KE+P6uRbz8AAIA/AACAPz5jBj9oJpY9NrwSP2YQNLxKRlK/b+Klv+zQgD8AAIA/AAAAABICpD0BAIC/PVVvP6uqKrMAAAAAbYjoPjCY6T4/jvA+0dn9Pq/2CD/z4Bo/SBs4P6VMXj8AAIA/AACAP9cYPj8WYgI8ihP5Ps2Kcz0Yai6/BgCAPxwbaz4AAIC/AAAAAMkM8b7k+TM8lU1vP1VVNTQAAAAA3yznPjv/6z7AR/U+3RUDP5j6DT9qNB8/w6c1P7wiWj8AAIA/AACAP7SaGj87SUo9FOjyPk9fgz2WFki/i7AFP7apMD8AAIC/AAAAAI3xxr7BdE2/jjZvP6uqKrMAAIA/r1zsPpZN7z47/fY+tpgCP0T6DD+e3h4/c9s/PzLKbz8AAIA/AACAP86q0D7gR947E9cUP67NPDyPXSu/6ZKHvxtnKT/9/38/AAAAAFX6RT51iaO+blZuPwAAgDMAAAAAF4vgPuYX4z4Riu0+1af/PnkDDT+Yph8/wrs9PwaRaj8AAIA/AACAP7g1Mz/9nKI8PD7FPuCPOz0zzQ2/RNFrv0I57z7DghI/AACAPzoYtT08n5o+kVZvP6uqqjIAAAAAdO3mPlUs5T5T8es+Sdf4Pn/JBj+7hRY/9aAwPwOKXj8AAIA/AACAPwvwTD9928i81JrMPlRJNb2NNQu/+v9/PwQ1CT7Wkxa/AACAP0+rNL5ourY8AP1sP6uqqrIAAAAAVjfZPuHi2T56at8+B2ntPgB8Az+u0Bc/drkzP7LlWz8AAIA/AACAP7T3AD9x5568pdkEP6VZO73yoRy/AwCAP7yc+D4AAIC/AAAAAMt4Eb7XPg+/vzhtP6uqKjMAAAAAeOTjPgIC5z66IPI+uVADP8mxEj/kSSg/PS1GP85gdj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
70
+ },
71
+ "_episode_num": 23846,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": 0.40480064000000004,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEXAIVer8ckCUhpRSlIwBbJRNfASMAXSUR0DGuTMyeqaPdX2UKGgGaAloD0MITBjNyjbtckCUhpRSlGgVTW4EaBZHQMa5ZZeZ5Rl1fZQoaAZoCWgPQwi0qiUd5fZyQJSGlFKUaBVNcQRoFkdAxrmULP2PDHV9lChoBmgJaA9DCDkmi/vP+nJAlIaUUpRoFU1mBGgWR0DGuaEB+4LDdX2UKGgGaAloD0MIgbG+gQkXc0CUhpRSlGgVTUMEaBZHQMa5vbr1M/R1fZQoaAZoCWgPQwjNHf0vF8ZyQJSGlFKUaBVNigRoFkdAxrnGypJf6XV9lChoBmgJaA9DCE0VjEpq9HJAlIaUUpRoFU2SBGgWR0DGueapJf6XdX2UKGgGaAloD0MIibfOv53bckCUhpRSlGgVTYIEaBZHQMa5+ZtNzsB1fZQoaAZoCWgPQwh+OEiIsuJyQJSGlFKUaBVNigRoFkdAxrojQnhKlHV9lChoBmgJaA9DCG3/ykpT7nJAlIaUUpRoFU2iBGgWR0DGuiq0KJEZdX2UKGgGaAloD0MI3UPC9z7ickCUhpRSlGgVTXcEaBZHQMa6pAezUqh1fZQoaAZoCWgPQwhihsYTQZVyQJSGlFKUaBVN4wRoFkdAxrrfRmbsnnV9lChoBmgJaA9DCDsA4q4eD3NAlIaUUpRoFU2MBGgWR0DGuuUlqrR0dX2UKGgGaAloD0MI7Ny0GefHckCUhpRSlGgVTaQEaBZHQMa7dh4t6HF1fZQoaAZoCWgPQwiXdJSDGf5yQJSGlFKUaBVNnARoFkdAxrvJQvYe1nV9lChoBmgJaA9DCADHnj0X/HJAlIaUUpRoFU1jBGgWR0DGu89MTN+tdX2UKGgGaAloD0MIa/EpAEbxckCUhpRSlGgVTYAEaBZHQMa70jDKoyd1fZQoaAZoCWgPQwiL+bmhKfdyQJSGlFKUaBVNdQRoFkdAxrv0AmzBynV9lChoBmgJaA9DCObJNQVy9HJAlIaUUpRoFU2DBGgWR0DGu/idat9ydX2UKGgGaAloD0MIYOemzTj2ckCUhpRSlGgVTYQEaBZHQMa8KvqcEvF1fZQoaAZoCWgPQwgq5iDoqONyQJSGlFKUaBVNgQRoFkdAxrws3T/hl3V9lChoBmgJaA9DCPdzCvIz/XJAlIaUUpRoFU2MBGgWR0DGvFpn13+udX2UKGgGaAloD0MIh4px/ibvckCUhpRSlGgVTXwEaBZHQMa8bRREWqN1fZQoaAZoCWgPQwha9E4FXItyQJSGlFKUaBVN4wRoFkdAxrzBuMuOCHV9lChoBmgJaA9DCKPMBplk5XJAlIaUUpRoFU2LBGgWR0DGvPI6Kcd6dX2UKGgGaAloD0MIrB4wD9n3ckCUhpRSlGgVTX8EaBZHQMa+CFwcYIl1fZQoaAZoCWgPQwh+NQcIpg1zQJSGlFKUaBVNawRoFkdAxr8HSS/0unV9lChoBmgJaA9DCIjzcAKT6XJAlIaUUpRoFU17BGgWR0DGvxFgUlAvdX2UKGgGaAloD0MItvgUACPxckCUhpRSlGgVTZcEaBZHQMa/PjSofjl1fZQoaAZoCWgPQwi9jGK55fZyQJSGlFKUaBVNkARoFkdAxr9MIyCWeHV9lChoBmgJaA9DCPWhC+pbGHNAlIaUUpRoFU1/BGgWR0DGv0/rUsnRdX2UKGgGaAloD0MIBcO5hhnuckCUhpRSlGgVTZUEaBZHQMa/qkJjUd91fZQoaAZoCWgPQwh6jPLMi+RyQJSGlFKUaBVNjwRoFkdAxr/P05EMLHV9lChoBmgJaA9DCBe5p6t7J3NAlIaUUpRoFU1gBGgWR0DGv+8ENe+mdX2UKGgGaAloD0MI6EoEqn/gckCUhpRSlGgVTZgEaBZHQMbAFCBoVVR1fZQoaAZoCWgPQwhYVpqUwuVyQJSGlFKUaBVNlARoFkdAxsBMmois4nV9lChoBmgJaA9DCExUbw0s6XJAlIaUUpRoFU2gBGgWR0DGwH2MqBmPdX2UKGgGaAloD0MIsHQ+PAvtckCUhpRSlGgVTY4EaBZHQMbAf60x/NJ1fZQoaAZoCWgPQwjD9L2GoPZyQJSGlFKUaBVNoQRoFkdAxsCziDujRHV9lChoBmgJaA9DCDnWxW00tnJAlIaUUpRoFU3dBGgWR0DGwMkI7eVLdX2UKGgGaAloD0MIb/QxH1DvckCUhpRSlGgVTbUEaBZHQMbA+9cB2fV1fZQoaAZoCWgPQwj/PXjtUslyQJSGlFKUaBVNrwRoFkdAxsD98lXzUnV9lChoBmgJaA9DCMy209YI63JAlIaUUpRoFU1yBGgWR0DGwU5SLqD9dX2UKGgGaAloD0MIv4I0YxHRckCUhpRSlGgVTa4EaBZHQMbBXNXxOL11fZQoaAZoCWgPQwiZ84x9Sf9yQJSGlFKUaBVNgARoFkdAxsFgjafzz3V9lChoBmgJaA9DCPloccawF3NAlIaUUpRoFU17BGgWR0DGwjosoUi7dX2UKGgGaAloD0MIjgJEwYzRckCUhpRSlGgVTccEaBZHQMbCVWicoYx1fZQoaAZoCWgPQwgeozzzMtxyQJSGlFKUaBVNlQRoFkdAxsJdH93r2XV9lChoBmgJaA9DCMTNqWQA6HJAlIaUUpRoFU2fBGgWR0DGwoexQizLdX2UKGgGaAloD0MIWI6QgbzXckCUhpRSlGgVTbEEaBZHQMbCk95yEL91fZQoaAZoCWgPQwjp1mt6EO9yQJSGlFKUaBVNjQRoFkdAxsKZCv5gxHV9lChoBmgJaA9DCNJwytw833JAlIaUUpRoFU2dBGgWR0DGwrNDhLoPdX2UKGgGaAloD0MIYeKPog6ickCUhpRSlGgVTeUEaBZHQMbCu8qnWJ91fZQoaAZoCWgPQwj6QV2kkApzQJSGlFKUaBVNeARoFkdAxsK+3BpHqnV9lChoBmgJaA9DCHQLXYkAs3JAlIaUUpRoFU3LBGgWR0DGwxIGwA2idX2UKGgGaAloD0MI7WRwlHwPc0CUhpRSlGgVTXcEaBZHQMbDNXyAhB91fZQoaAZoCWgPQwivfQG9cOhyQJSGlFKUaBVNvwRoFkdAxsNn9sJpnHV9lChoBmgJaA9DCM0GmWTk5HJAlIaUUpRoFU2UBGgWR0DGxHgrYoRadX2UKGgGaAloD0MIPDPBcC4Cc0CUhpRSlGgVTXMEaBZHQMbFafmcOLB1fZQoaAZoCWgPQwgZWTLHcvdyQJSGlFKUaBVNhwRoFkdAxsVy0VJti3V9lChoBmgJaA9DCBfyCG6k+3JAlIaUUpRoFU2KBGgWR0DGxbE6xPfsdX2UKGgGaAloD0MI1xcJbTnEckCUhpRSlGgVTaEEaBZHQMbF5T4DcM51fZQoaAZoCWgPQwg3FhQGpblyQJSGlFKUaBVNqwRoFkdAxsX54rSVnnV9lChoBmgJaA9DCFWFBmLZBHNAlIaUUpRoFU1mBGgWR0DGxlMANoaldX2UKGgGaAloD0MIm3Eaooq/ckCUhpRSlGgVTbkEaBZHQMbGYpYLb6B1fZQoaAZoCWgPQwh8YMd/Ae5yQJSGlFKUaBVNoQRoFkdAxsZi+IMz/XV9lChoBmgJaA9DCDnx1Y7iynJAlIaUUpRoFU2+BGgWR0DGxrTAaef7dX2UKGgGaAloD0MIGAeXjjkdc0CUhpRSlGgVTXIEaBZHQMbG4y6DoQp1fZQoaAZoCWgPQwjoMF9ewANzQJSGlFKUaBVNhgRoFkdAxsb0gJTl1nV9lChoBmgJaA9DCB8OEqJ8pXJAlIaUUpRoFU2+BGgWR0DGxxvEVFhHdX2UKGgGaAloD0MI09nJ4CjsckCUhpRSlGgVTXsEaBZHQMbHJe0gKWt1fZQoaAZoCWgPQwhKXp1jAOdyQJSGlFKUaBVNmQRoFkdAxsdZlNDc/XV9lChoBmgJaA9DCGHCaFa2+3JAlIaUUpRoFU14BGgWR0DGx3NloUSJdX2UKGgGaAloD0MI8nub/qzkckCUhpRSlGgVTZYEaBZHQMbHmqqXF991fZQoaAZoCWgPQwjGbworVe9yQJSGlFKUaBVNhQRoFkdAxsfXImw7knV9lChoBmgJaA9DCOoj8Icf4nJAlIaUUpRoFU2cBGgWR0DGx91Xo1UEdX2UKGgGaAloD0MIzCVV283kckCUhpRSlGgVTZkEaBZHQMbH+62WpqB1fZQoaAZoCWgPQwiTcYxkDxdzQJSGlFKUaBVNXQRoFkdAxsiEFHrhSHV9lChoBmgJaA9DCC6qRURx93JAlIaUUpRoFU2ABGgWR0DGyNum51/2dX2UKGgGaAloD0MILUFGQIUoc0CUhpRSlGgVTV0EaBZHQMbI6J5E+gV1fZQoaAZoCWgPQwifkQiN4P1yQJSGlFKUaBVNaQRoFkdAxsjvCswL3XV9lChoBmgJaA9DCCKKyRugx3JAlIaUUpRoFU2iBGgWR0DGyQPPLPlddX2UKGgGaAloD0MIbD6uDdX4ckCUhpRSlGgVTYgEaBZHQMbJEESmIj51fZQoaAZoCWgPQwjac5maRAtzQJSGlFKUaBVNdQRoFkdAxskcLUkOZ3V9lChoBmgJaA9DCBaiQ+CI6HJAlIaUUpRoFU19BGgWR0DGyT6bvw3HdX2UKGgGaAloD0MI0JhJ1Iv5ckCUhpRSlGgVTYEEaBZHQMbJP/e1rqN1fZQoaAZoCWgPQwhmLQWkve5yQJSGlFKUaBVNlgRoFkdAxsm+M/hVEXV9lChoBmgJaA9DCFBVoYHY8nJAlIaUUpRoFU2GBGgWR0DGyb/KnvUjdX2UKGgGaAloD0MISwSqf9D+ckCUhpRSlGgVTXMEaBZHQMbJ5waisXB1fZQoaAZoCWgPQwjAywwbZe1yQJSGlFKUaBVNlQRoFkdAxssWmF8G93V9lChoBmgJaA9DCDC6vDnc+3JAlIaUUpRoFU2QBGgWR0DGzARUcXFcdX2UKGgGaAloD0MIkh/xK1bYckCUhpRSlGgVTZUEaBZHQMbMEUlZ5iV1fZQoaAZoCWgPQwiGWP0RxvtyQJSGlFKUaBVNggRoFkdAxsw50SRKYnV9lChoBmgJaA9DCFCr6A8N+3JAlIaUUpRoFU2HBGgWR0DGzIJqGlANdX2UKGgGaAloD0MIVObmG5H3ckCUhpRSlGgVTZYEaBZHQMbMnOndfsx1fZQoaAZoCWgPQwiDaK1oM+FyQJSGlFKUaBVNfQRoFkdAxsz4v9LpR3V9lChoBmgJaA9DCDIBv0ZS6HJAlIaUUpRoFU2RBGgWR0DGzPtF+d9VdX2UKGgGaAloD0MIkX77OvDxckCUhpRSlGgVTY0EaBZHQMbNGh5xBE91fZQoaAZoCWgPQwhIpkOnZ/1yQJSGlFKUaBVNcwRoFkdAxs19225QQHV9lChoBmgJaA9DCATkS6hg8nJAlIaUUpRoFU2FBGgWR0DGzX4siB5HdWUu"
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 929984,
84
+ "buffer_size": 1000000,
85
+ "batch_size": 128,
86
+ "learning_starts": 100,
87
+ "tau": 0.005,
88
+ "gamma": 0.999,
89
+ "gradient_steps": 32,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fe9b1502560>",
97
+ "add": "<function ReplayBuffer.add at 0x7fe9b15025f0>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7fe9b1502680>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe9b1502710>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc_data object at 0x7fe9b1555ed0>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "policy_delay": 2,
110
+ "target_noise_clip": 0.5,
111
+ "target_policy_noise": 0.2
112
+ }
TD3_BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0221a3407e847d61a76f835fa39b90437871f17cab063ef56754a1b7c8b0cfa5
3
+ size 3179321
TD3_BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
TD3_BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.17.5-zen1-1-zen-x86_64-with-arch #1 ZEN SMP PREEMPT Wed, 27 Apr 2022 20:56:14 +0000
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function TD3Policy.__init__ at 0x7fe9b1522680>", "_build": "<function TD3Policy._build at 0x7fe9b1522710>", "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fe9b15227a0>", "make_actor": "<function TD3Policy.make_actor at 0x7fe9b1522830>", "make_critic": "<function TD3Policy.make_critic at 0x7fe9b15228c0>", "forward": "<function TD3Policy.forward at 0x7fe9b1522950>", "_predict": "<function TD3Policy._predict at 0x7fe9b15229e0>", "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fe9b1522a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9b150ab70>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV/wsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAA1b84QlBdAx35aZIrNuvT7C0YASk4YBlTudiBx1H81L9aYyyuHuEuJXed3sWjuCOFhb5M/M+IjAd83GzDRYl32ZdVoaS95VrfO8433y0U0tI0Tg5YTjeSE+9jKFr9uMkiC+Zj5WW9pAVgMTdOfh8HUAQWJN6qN1VukHu2trGNnNUzLJCUGBnj+M8x4ZEohGd6mrC2OPDX3xr3duiRUILzxNwmYWK0731DZZQ8bM4dttN+6+jZkQPGbt0hacy38xWsg9J4AwwOFLx9Lek4koh3mgItAfAQ0C5RIuwiPNC3+Jo2V4b9PPsOKzDhHHPJbcjtUt/5f4ZKMVWy2Ljxi66kwGzmK9GRPZCbQGa6i8wVQxEGBJzEj9q2C2jKBCU+5wYbYkrIWbWO0viPL+nnwmlqpBL0G7cvvW5O9Ygo4DQRoaED1nWyVjRe7DMlGqcrM4dcYrnl//g/zFm8Fo5z7jDUZC7uwH8528mnpcNrWV+ODp9OqQ0LMvmBNpAPtaaQ5FMw8bidS9hZCAnDmqwsz5KefbqKE/mRUr5TiCasxXrpqG1P85ZaX+QK/ZS0MaTj2cMXBdXO6efmirMi5PtQJ6/pEIk1PSUxLenWsUE9hmI0LEtUnFmttHbFDYWTmfOVtSyBdAOjrfq+xS+0588yRLEEJj6RrqIuEvtL3LS5/40dhnl3JbAkv7+Dhy3Pj55DF3JzJvuASyufuItnJng6t9kpJio4+FMqH+iCQmX30JEudOKvd+uzmvpsMogthhKWS4zld90lrDaFtg0vc1OGfnqAbeueUvbVl0zV+iiee/PVMdaJtpQereBfw3GHXQ5fCXzLocJaYX0KLXDL3Vgh5obIdoN9Rbch5rmmRu1tev4095twNyEahOxBq0nPt8eEfpGupqfVENYoAoNaJqvjv5upjhGaRK4v5GY+lPNL0abw9TG+WW3gTsO/ZpDPu8Sf4GwZJ9wP4JG5O0waDdCOlFn4JTA+YFBVPO6P0VBKG+WX/NPN1VcfL7eKV3f1CVvfMO48s4xNLnQUle4cKQY5botSr1/d0NOP9Ytu0EGFIwYTEfh4V9Bnb+XXlmTRtvXBC3+TloHBSzhZm3Yd01dV/m6jgE5q3oR+y6QBT3IsgIuHoROFHPm+UlQKjAafM6u0SkQnROqWZ6ELM5Ihd1wj28B/hRyJQ36n4sBgPy7j5wIWFdcz43IE+UM/Dm9oiJ+6zCiwlHy1GScdeAp6AifGLiHuACN7L9Dq/rp9VcOHFQWjqPKQETNos3GJESxgjVpqDcnzUyE36WNPxN7jrysO1WlDLqr+OLvG9af22YsQDvZd5hIcE7vRlwK2Q9jBUz2ARWUrwFpeTH/C/NJXdimsaLC+uCDeE6V15zI32zVjBYuS2aBpoQDGBv4L5JoSQJdfGCrCFwe8hs3lFAFtbVUr2p8bD+o8niGTZ09vwMHfHtNtpdojvgYWAKLQkt9Om0WZojTovzOZTj8qko7GEK8KolOePlwi1ouTxnP6of9I3js9Th6iVENTN7tdXH0mVqmPS+TJsNpuA1yBdRQSc2h12DI1kYF3uLUjcDfoqMW478dKoj+hGtL7Qt1mGb8VFMzJcljWYaCGyjpGelA5E1dFf2ejZtCmgc+L01FagD9rQHKfaZLOf7hkQxoKZVh+QXiXN255loY4HIDkWKrNqsyZKAJn9hzLuV/C3ZBtvN8UOKpV4PmA99jZIEOGon+fmJPbIcylAh/shpo37OvOITX0Wd0FnucTwOzXAx0oxMwLlaCWx0CxZ+V6/5DQYVrkce+d8nz5ILvrfhwKreYe9XF/SjQWApcnLfbp13nyI2OgWoTHuWlWMk+rVsexi7tlMlXJobFiZ52dldvwoyVJo6iKuDS9zyOdpM0q4kgzBBlf/xF/D6/NF3COVbGg0UTJ6oYIrf6mElTNeCAWeNG3LaGiJA4gjHeMy+8Ksix7B0DQevjRMYIZXevZDj2ZLf4xlD9XEAtSschx1Bf06bP8C28pZXT+MyVa2raaR4ExbMXsKYSH3YvJQQniSLhqP7czOZHZwcapPdOBo46g/T6tqLTfVRUxbtJucwDAJsstFvv6KkD9u1mRb/g4Orxx1J0LFnXbuap6RQklxhSAUpQ0WoTlpA06jIVAvrZw/2g5O1/FpjQQdMoKo8xSEGbzkb57UgZiow/AHy2f2RGl3HPiHLw3gbM2JOgt//cPsTF7wpMHQU2kI1td7ujAc24LwpRKkVC7TWxPFVqVc7+XXonDJFX2nUcqTEhcXUshdEkvhWExLVUeZCL+CUIjk+W8Ggar0e8xz90OUqm7ML9tSi7aLcMJDX1439+N5xDw5Sna4eb/SU+O/rfv0Fh2gj/0cMvZ71AjYkmlNc7YLzkzRjiviGM+yED5gdXsM353IDt+YJeRgpSlN1WIzJ/kExMhIo57JMt3LS6OcHkTQOPP86Y9nUpextDD1c/34DLSLnlTF5AFBxvEmA6WkruAdBNin2B2JKR5R8Sm3tJ/yn8qDdm7kakBz3vGNHEFnvLGrPM3Q2Kx7sgBBcd0DW3mdU6xjMZaZl+RmOBsX1wPRwlqf81RF3eS+W9mmiK5/zpCTFlWywaPGOl0W/l0AuEYUAJbacu5DRsd517qoRVzsBd9tjhPMSPVDWHguPTUmkwm7H+XoAjSL8Jim8KQuZz3dxPHZPSzKTaUgCWashVTdJ/lphUSFx6npdphKslz8eunSdfWWw2GfnnhK+MdNdPqutiJR0GYpoj+ESp6yDC31YPHzcFfSr0FOGk4yh/cQQEJk9ekGgAkDHQvxCz7hhbue6Ff3XxP4efngWxA8Uvybu6J24I55HZB3vWFzl2NTQAp5exDS2Q24TnzPIbWvzKR06Idr5vT9sj8hug1ioLtHrjJD6OmKa0u78nbvkzO4rt2m0/cW5wM7DmxZaBAHRmmMZgwo+4qBb5WRLFxaBJYumteAXdb/pG2ApTem/OMxZUSp4YN6e/o9Q6WKopjcqFetFpgpS1wC/p2AwoG6hudW5GJElmiVOev9Xu+D+gfLURD0ShieNEBxyI0aEbWUOWlQZFgate9dOjQoG03TYYQrHUeRmIjrDBXyk50Bduq4Rf/b34unO326oM2QfhVx793w6YrkK/r1xsKR3C2JVfDIRcK9ZK+BCRp2mmkS74b4KkfIHk2I2+84KZd1MT8B/O+Lbt3i3ETlED5G8RrXSqH2nbhPchbJswRmm6E0toYOAP7veM0+ilSWbjrsXkoXR4LVtInBBbltFGdi5Y3pb+4H/Kx667XZTaA4b6X9mYwRRt65Hp3LhQedCVb7O59lmBzaSG+AY8/A+Nw5jF+lGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTZABdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 32, "num_timesteps": 29760000, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651891393.0083017, "learning_rate": 0.0001, "tensorboard_log": "model_log/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAN2gGz8Mu668532vPqQnsLpMFqW++APJPvC0bD5T7oy9AAAAAC6p+r3Aouk+dFZvP6uqqrIAAAAAA3zqPrgl7T6Y5+4+cdr3PuMiBD8xFxI/JvQqPwA4Uj8AAIA/AACAPwyjAD+AuFa8bDTqPpLfar3A8N++jBpJPxgQpT4AAIC/AAAAADF2Vb4oZlU/kb5oP6uqqrMAAAAAUCrtPnam8D7mRvk+GgQDPyCGDD/QqRw/4DU3P8bnYT8AAIA/AACAPzhGhD1kkSM9asGcPO15QzzusJw+//9/vzC+Sj0BAIA/AAAAAK4Ezz4yjMy94Ct4PvvU0DwAAIA/fNrlPrt26D53mfA+FET/Pp0/Cz8MEh0/tuI4P7v5Zj8AAIA/AACAP0otHz9aDHO9yvq7Pt+oGr2r/bi++/9/Pxgymz6czgk/AAAAANponbyulPw+4uhtPwAAgDIAAAAAgavnPh486j5pHvA+fyz7PpB2Bj8CrxU/RUYrPwoqUT8AAIA/AACAP1U/OT/lVDs4wJb8PqyzZDyP1kG/K7Z8PwirKz8AAIC/AAAAAFw5pb4IvV2/Pd9uPwAAAAAAAAAA18XmPlu05j5Ux+4+Dm34PsCEBj9wqhg/tQEzP0RdXz8AAIA/AACAP5PQDT9xyvC8PkflPh81lr3Siga/AgCAP1rlnz6VfA++AAAAAHpM3b05wOM9BTNvP6uqqjMAAAAAAADkPha95z500PE+wnMAP+cMDz+eLCI/0a0+P3Sibj8AAIA/AACAP7QfGj96tV89EwMJP7/SZzuAKUm/sOyuv/rtKj8BAIA/AAAAAOhY3buiMm6+RU1vPwAAAAAAAAAACZLoPmcD7T6DZfY+d0oFP8huFT+kaSw/ZuNLPwAAgD8AAIA/AACAP+EDhT1P+iM9E9uYPAZIQjwqmpw+AACAvwAWTj0BAIA/AAAAAGSRzj4qbc29oK93Pks/qjwAAIA//NjlPjZ16D7ll/A+akL/PrQ+Cz8FER0/geE4Pzr4Zj8AAIA/AACAPyroWD+AkLO9Y0BTPlaO5jtHozW/epjoPkAGxT487bu9AACAPw7I7T72WSg/yNp2PwEAgD8AAAAAVfzhPlWN5D4Gjew+dfj6PsTnCD9sbRo/dRE1P4QAXj8AAIA/AACAPxDNED/MXy88YjrdPlFz4T3YLAK/TUiZv6Jfvz6TZ4A/AACAP1W8Oj4Ysdk+J1xvP6sKl7gAAAAAO6PjPkU/5z5zqe8+F77/PlcjCz8aMB4/6hVAPzPsbz8AAIA/AACAPytqST/aqF89NJbtPimcvz07VDy/uv60vxDwIj8AAIA/AAAAAJ6Cob2KvUm/vT5vPwAAgDMAAAAAlV3pPrY55z6KKus+XoD5PuTWBD+ykBI/VuYpPxowWj8AAIA/AACAPwObFT9/B4O8wij0Pl8Jp7t0dvO+CloRv+LZnj4BUaI+AACAP603M70Qi2Q+Bq5cP/3/fz8AAAAAzzDgPpNE4j4NgOs+eBv7PlA5CT8lNRs/fp41P2EsXz8AAIA/AACAPxGfIj+MMmU9BBoUP3hmQD0Z0Tq/XIa1vyjTAD8BAIA/AACAP3KohT3Uqi2/a1htPwAAALQAAAAAD+HfPppk4D5lgOU+b7HwPlBMAj94lxI/gaoqP6tPVD8AAIA/AACAP/mvID8opB+7WbG0PoVSjb1p/wS/xJCaPeCAJj/NFSK/AACAP6+NdL4AAIA/x31AP7t7bb8AAAAAGTjtPnWW7j5GWPc+e4sDP/51Ej8JOCc/H6ZDPyRLbT8AAIA/AACAP/2nJz+dBbc6/fjZPonc1bmSnzO//v9/P8Sgvj77gqW/AAAAAOag6r38PD+/a09tPwAAAAAAAAAAuZbcPpgQ3j6iHec+cmz2PhTdBz/V6x4/vbhGP4ixez8AAIA/AACAP0DoID/OGCE9AngBP480hD29vTm/oymiv7q5DT8AAIA/AACAP22iQj7S6ga/X31oPwAAgLMAAAAAPqXhPiQQ4z5KUuk+Plr1PtwtBD/i8BM/AUIuPxdKWz8AAIA/AACAP372Ej97UYW9xgKyPjaee73C/KC+flUWP2weLj41Lr2+AACAPxKZsz3k+2o/9bxuP1WenLwAAAAA/wHgPkOh4j6yWuk+r471PqLfBT85OBc/PD01PxzeZT8AAIA/AACAPzW6XD8/yLI8awSZPrpd4TuM9Em/Uk3HPuZ6mz6op0O+AAAAANIahD1OTGS/iHFvPwAAAAAAAAAAbD3kPvrU5j4X6e4+WXn9PmBFCj/H9xs/t3Y3P+E9ZT8AAIA/AACAPw+pHj9vsyq9pzCYPr/1m7y/wIO+XOtzPcBmvj3Jo8S9AACAPzQ9xD6UnGQ//1VvPwAAAAAAAAAApqndPhUu4D6ZBug+ayv2PlJJBj/bexc/69MzP5rRXj8AAIA/AACAP9UdPD/FswS9ck8BP2/S+byWJ/6+ZE13PyRImT5FLGK+AAAAAHJxlr60jTQ+MI5rP6uqqrIAAAAAA/bkPruX5z6pquw+w4/5Pp7vBz9vmBc/7RsuP9H9Uj8AAIA/AACAP5R3DT9LqJ48od8VP1wCMzyxJVG/AAAgM/okIz/NLA89AAAAANOvJj0AAIC/Jc1uP1VVVbQAAAAAvy3kPh4z7T4CLPs+X4YIP6yiFj/2kSo/zxpIP0YzcD8AAIA/AACAP9wwAz+dUP278HwJP3N4p73clp++Nr4aPmlIAj9XFJ8+AAAAAH7kpr0XxE4/5FZvP6uqKjMAAAAA88bxPk2V9T4k0v0+l9UFP9JZDz+mFR4/Liw5P1eZYz8AAIA/AACAPyHuED/rhYA9H2/KPtHkqz3JGDq/8v+zvyAGRz///38/AAAAAJ3aXz4BAIC/4UlvP6uqKrMAAAAAhaLsPhPG6j51YO4+xa34PhobBj8fPBY/gKsyP1hCYT8AAIA/AACAP86wLz9hqzK8f0HjPufJhL0S0eS+IMWyPv6u/z5V0Yy+AAAAAFdOEb5WNVA/Z0pgP0t6zr0AAAAAfy3rPi8R7z70Yfc+bnACP6QdDT/CrBw/Uo03P93SaD8AAIA/AACAP7kf+D4Bnwe91ROxPnrFuzxS4gG//sx/P0A8xj6gppg+AAAAAKpZibxtUoA/fElEP3gBt78AAIA/73vgPj1b4z45dOw+qkz+PpjuDD8jTyE/cC0/P1UPcD8AAIA/AACAP3AIDD/sgDc9CTkNP9HUjLxzkky/AADgtA1Wbz8AAAAAAAAAAGBIlDr+/3+/6TlvP1VV1TQAAAAApKbnPl/m6D5a2+8+ud78PqO3CD8P4Bo/eX03PyNGXT8AAIA/AACAP4FPPz+39Rw8ptP5Pv2AKT3WWRy/1zdmP/Cq/z0QUmq/AAAAAK8O8L7w+r88CEpvPwAAEDQAAAAAl7voPnQ07T70rPY+VY0DP9uODj++Oh8/rtw1P9g3Wj8AAIA/AACAPyKYHT9BvME8jEDrPoY/QD3nZje/kRRVPwFdEz8AAIC/AAAAAKQQ1r6EsL6+BThvP6uqKrMAAIA/5YztPk9L8D6cAfg+bSADPzNlDT9FHCA/esBAP9ffcD8AAIA/AACAP5Q02D4UVvM8ftoWPwF1RTvFsEC/2veEv9K3SD8AAIA/AAAAAMIk7T2eOHm/w2RuPwAAAAAAAAAA25ngPtUm4z46hO4+Sj8AP29FDT8i2h8/o8c9P2MIaz8AAIA/AACAP04kOD8m2x49ZrHNPha1kj2WUiq/8DGwv6LmFz/3eIA/AACAP9qxsT0YP868yEVvPwCwArkAAAAAZNXnPuc65j4xm+0+D2X6PuyyBz9NbRc/QAoyPyTNYD8AAIA/AACAPzQ2SD9yrRa9muHJPoVehb3CuOi+EK2LP+CqYj3YqTe/AAAAAJeJGr79ZaI+nfVsP1VVVTMAAAAAr0jXPnXo1z7Jct0+eMPrPgLVAj/KuRY/cpcyPx/+WT8AAIA/AACAP+0v+T7ldQu9HA4DP7p6ir2uigi/AgCAP5SbvT4AAIC/AAAAAHsSHr7yOB6+KEttP6uqKrMAAAAAXL/iPpNS5T4kmPE+3ccCPypNEj+hLic/G9ZEP+a1dD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAEpcHj/Wobm8bw+tPl3NMTzKH7W+/NNSP/jCdD4AAIC/AAAAAOu4Ir6q1ec+e1ZvP6uqqjIAAAAArojqPogy7T6D+e8+I4/4PhuQBD83ThI/rDkrPzf1UT8AAIA/AACAP2xUAj8tFsK8c6jmPnpuGb2mXP++LdGBP4A74D4AAIC/AAAAAC3GjL6T020/SZdoP6uqKrQAAAAA/oTuPrPX8T6BDfs+XCMEPySbDT8eux0/TWE4Px1+Yz8AAIA/AACAP5/6Nj0k7jg9xjuDPCBhgjyWxsY+euI2vuDUm72V6Eu/AAAAAEgQ0T7WC8K+3MR9PsXYnj0AAIA/pYflPvMi6D7BQvA+Fej+Pm4NCz9w2Rw/FKA4P32mZj8AAIA/AACAP4rIJj9W2wy9TfLAPkAXo7woqeC+AwCAP8AkbT6l8YG9AAAAAD3bcL1wbZY8iuxtPwAAgDMAAAAAVaLoPtY36z4QlfE+LsH8PgthBz80VxY/k3EsPwQYUj8AAIA/AACAPxpDOT86w4w8cUACP5P5+zzTvFW/AACAsmGVST/9EsI+AAAAAN7Kgb7//3+/aspuP6uqqjQAAAAAyTbnPgKB5j7icu4+UiD5PodlBj+GSBg/O/MyPwUIXz8AAIA/AACAP1iXET+vhBO72aDqPr/HZr3vqxq/AACAP8wSpj7bL1q/AAAAAIbS772tPMK+jjdvP6uqqrIAAAAAlb3lPrEZ6T48sfM+DkYBP7jtDz9hiSM/+DhAP2ZIcD8AAIA/AACAP+QlEz8kPho9uJAHP+lscDzJ8iy/lTu9v7pvCz+CMYA/AACAP4wRQTxcCqs+s05vP6uqOLgAAAAA+5/nPgHn7D4xTvU+V6QEPwaLFD+MFSw/JIpLPwAAgD8AAIA/AACAP/5EOD2DgTk9WKJ/PLFxgjzusMY+ytU5vvAumr093km/AAAAAMyG0D43iMO+CFt+PhfsmT0AAIA/bYblPrch6D56QfA+uub+PrEMCz+b2Bw/GZ84P0OlZj8AAIA/AACAPwodZD9N2Zm9FylIPqY6X7zz5j6/XDP3Pp50yj7VZ26+AACAPyIm0z5Sk6I+BAFYPwEAgD8AAAAAA9zhPqVs5D4xa+w+kNT6Pi/UCD9WVxo/GBA1P5jkXT8AAIA/AACAP19xDz/6m9g73YrVPhvIuT1kZdK++gR6v4SdfT7nIT0/AACAPx3qFz48Qh0/tlVvPwAAAAAAAAAAvpzgPjuV5D5pmOw+QrL8PtuLCT8l4xs/ePc9Py1dbT8AAIA/AACAP0l1Qj82IAs9dxjqPvrI1j0NLh+/sKqzv+YZAz9xdYA/AAAAAFobhLxGZmy+LUdvP6vMyrgAAAAAZzHoPuLj5T4Kguk+6AH3PqosBD+SkBE/mx8oPy7AVj8AAIA/AACAP2CsFz9869W80JbnPhphc7uycOC+a/W6Pqg6iD673Ra/AACAP62geL3+/38/yG49Pz9qKr8AAAAATnXgPrWJ4j6rXOs+RhT7PolSCT+vPRs/Dxc2P9ZRXz8AAIA/AACAPzN9Gz89PRo9OBcTPyRgaD08ix2/7kXCvxpzwT7Li4A/AACAP+Io9D06hcm9M2ZtP6va07gAAAAAAL7ePrX53z5UCuU+svfvPgHBAT/UABI/KBYqPykIUz8AAIA/AACAPzACIT+Shys64x63Ptr6Q732bAa/e1FCvhWaHz8kY5U/AAAAACQIo74F0kY/+KZcP9FuHb8AAAAAjFvvPig08D6lGPk+ejEEP/k7Ez/pVig/IzVFP6FKbz8AAIA/AACAPyyEJz9+d5o8NEDePmG8nDyWiUe/j983PwzrBD/psZq/AAAAAL00Yb0AAIC/MRdtPwAAAAAAAAAA5k3dPglU3j7Rv+Y+X3v2PgVnBz9JMR4/c/VFP3unez8AAIA/AACAP9PjGz/BnY08b2gAP3galT3Cix+/RYSnv3j/2z5UWIE/AACAP0mtbT7G2t09n4FoP1X1krkAAAAAAhbgPr/b4T4fHOg+FUP0PhSDAz8a2BI/4AAtP2l2WD8AAIA/AACAP5xQGz9hl0K9RpuwPnrhTr0siL6+lCldP/QpVD5j+YS/AACAP4w1ZzzWMfU+tk1vPwAAADMAAAAAz2ThPpcz5D7WSus+5Er3PvzGBj9GRBg/yGk2P5A8Zz8AAIA/AACAP/nvWT/R+Ac9o2ScPn3MyzzbzlG/AACgswx0pj7NskQ+AAAAANEjCz7+/3+/ekVvPwAAADQAAAAA9hPkPgur5j6xve4+Tkv9PkIsCj9y2xs/FGw3P+VIZT8AAIA/AACAPyD8Iz/vDIG9SoGQPgHrTr2ntIa+0FHGPiA64D0BqKO+AACAP5qrnz78/38/bWxvP1VVVbQAAAAAuCfePpWt4D6Qiug+bbf2PrKVBj9Szxc/V0Y0P+xoXz8AAIA/AACAP3RGQD/0cEu8NnQDP2TFbLxjnBK/AQCAP7DfpD4z9Vy/AAAAAG23nb7cYDO+u5BrPwAAgDMAAAAAVKPlPqKb6D4uH+4+VqP6PpNlCD8kaRg/pQwvPzNRVD8AAIA/AACAP83/Cj+65D09oHAbPzSymjwQIlG/Ejygv6PYIT8AAIA/AAAAAALg9j10OH2/1LBuPwAAAAAAAAAA2QviPkaY6z5ob/k+EeAHP5Y2Fj/HgCo/ohtIP0LscD8AAIA/AACAP3MvBD9PYX27umAKP8ZYer0wo6W+6OfKvcwz8T4jzWI/AAAAAC+SFb4Omjc/kFZvP6uqKjMAAAAA4nHzPpyV9z5Q+f8+XRUHPzb4ED8ilx8/tcQ6P/3NZT8AAIA/AACAPwbxCD+6Hls9+ZzJPoZmxz1zRR2/xb+4v7iFJz///38/AAAAAOCZmD6UJja/k1FvP6uqKjMAAAAA0V3rPoyX6T7/GO0+t+X2PpQqBT88ohQ/Su4wP09BXj8AAIA/AACAP/YYMT9tkhm7fA3kPnuISL1KLvO+qNoaP2oGCD8R2ZK/AACAP4esU757HhE/IjJjP8vfQT4AAAAAj6fsPn5n8D4bOfk+nXkDP4o2Dj/qFR4/kZs4P/Etaj8AAIA/AACAP4tRAD+/nG28zNHlPuTIur1VuRW//v9/P1RisD7QXFy/AAAAAJr3xL1iQtC+n1lvPwAAAAAAAAAA4v7fPoS74j75g+s+8z/9PlBcDD9j3iA/5KE+P6uRbz8AAIA/AACAPz5jBj9oJpY9NrwSP2YQNLxKRlK/b+Klv+zQgD8AAIA/AAAAABICpD0BAIC/PVVvP6uqKrMAAAAAbYjoPjCY6T4/jvA+0dn9Pq/2CD/z4Bo/SBs4P6VMXj8AAIA/AACAP9cYPj8WYgI8ihP5Ps2Kcz0Yai6/BgCAPxwbaz4AAIC/AAAAAMkM8b7k+TM8lU1vP1VVNTQAAAAA3yznPjv/6z7AR/U+3RUDP5j6DT9qNB8/w6c1P7wiWj8AAIA/AACAP7SaGj87SUo9FOjyPk9fgz2WFki/i7AFP7apMD8AAIC/AAAAAI3xxr7BdE2/jjZvP6uqKrMAAIA/r1zsPpZN7z47/fY+tpgCP0T6DD+e3h4/c9s/PzLKbz8AAIA/AACAP86q0D7gR947E9cUP67NPDyPXSu/6ZKHvxtnKT/9/38/AAAAAFX6RT51iaO+blZuPwAAgDMAAAAAF4vgPuYX4z4Riu0+1af/PnkDDT+Yph8/wrs9PwaRaj8AAIA/AACAP7g1Mz/9nKI8PD7FPuCPOz0zzQ2/RNFrv0I57z7DghI/AACAPzoYtT08n5o+kVZvP6uqqjIAAAAAdO3mPlUs5T5T8es+Sdf4Pn/JBj+7hRY/9aAwPwOKXj8AAIA/AACAPwvwTD9928i81JrMPlRJNb2NNQu/+v9/PwQ1CT7Wkxa/AACAP0+rNL5ourY8AP1sP6uqqrIAAAAAVjfZPuHi2T56at8+B2ntPgB8Az+u0Bc/drkzP7LlWz8AAIA/AACAP7T3AD9x5568pdkEP6VZO73yoRy/AwCAP7yc+D4AAIC/AAAAAMt4Eb7XPg+/vzhtP6uqKjMAAAAAeOTjPgIC5z66IPI+uVADP8mxEj/kSSg/PS1GP85gdj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_episode_num": 23846, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.40480064000000004, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEXAIVer8ckCUhpRSlIwBbJRNfASMAXSUR0DGuTMyeqaPdX2UKGgGaAloD0MITBjNyjbtckCUhpRSlGgVTW4EaBZHQMa5ZZeZ5Rl1fZQoaAZoCWgPQwi0qiUd5fZyQJSGlFKUaBVNcQRoFkdAxrmULP2PDHV9lChoBmgJaA9DCDkmi/vP+nJAlIaUUpRoFU1mBGgWR0DGuaEB+4LDdX2UKGgGaAloD0MIgbG+gQkXc0CUhpRSlGgVTUMEaBZHQMa5vbr1M/R1fZQoaAZoCWgPQwjNHf0vF8ZyQJSGlFKUaBVNigRoFkdAxrnGypJf6XV9lChoBmgJaA9DCE0VjEpq9HJAlIaUUpRoFU2SBGgWR0DGueapJf6XdX2UKGgGaAloD0MIibfOv53bckCUhpRSlGgVTYIEaBZHQMa5+ZtNzsB1fZQoaAZoCWgPQwh+OEiIsuJyQJSGlFKUaBVNigRoFkdAxrojQnhKlHV9lChoBmgJaA9DCG3/ykpT7nJAlIaUUpRoFU2iBGgWR0DGuiq0KJEZdX2UKGgGaAloD0MI3UPC9z7ickCUhpRSlGgVTXcEaBZHQMa6pAezUqh1fZQoaAZoCWgPQwhihsYTQZVyQJSGlFKUaBVN4wRoFkdAxrrfRmbsnnV9lChoBmgJaA9DCDsA4q4eD3NAlIaUUpRoFU2MBGgWR0DGuuUlqrR0dX2UKGgGaAloD0MI7Ny0GefHckCUhpRSlGgVTaQEaBZHQMa7dh4t6HF1fZQoaAZoCWgPQwiXdJSDGf5yQJSGlFKUaBVNnARoFkdAxrvJQvYe1nV9lChoBmgJaA9DCADHnj0X/HJAlIaUUpRoFU1jBGgWR0DGu89MTN+tdX2UKGgGaAloD0MIa/EpAEbxckCUhpRSlGgVTYAEaBZHQMa70jDKoyd1fZQoaAZoCWgPQwiL+bmhKfdyQJSGlFKUaBVNdQRoFkdAxrv0AmzBynV9lChoBmgJaA9DCObJNQVy9HJAlIaUUpRoFU2DBGgWR0DGu/idat9ydX2UKGgGaAloD0MIYOemzTj2ckCUhpRSlGgVTYQEaBZHQMa8KvqcEvF1fZQoaAZoCWgPQwgq5iDoqONyQJSGlFKUaBVNgQRoFkdAxrws3T/hl3V9lChoBmgJaA9DCPdzCvIz/XJAlIaUUpRoFU2MBGgWR0DGvFpn13+udX2UKGgGaAloD0MIh4px/ibvckCUhpRSlGgVTXwEaBZHQMa8bRREWqN1fZQoaAZoCWgPQwha9E4FXItyQJSGlFKUaBVN4wRoFkdAxrzBuMuOCHV9lChoBmgJaA9DCKPMBplk5XJAlIaUUpRoFU2LBGgWR0DGvPI6Kcd6dX2UKGgGaAloD0MIrB4wD9n3ckCUhpRSlGgVTX8EaBZHQMa+CFwcYIl1fZQoaAZoCWgPQwh+NQcIpg1zQJSGlFKUaBVNawRoFkdAxr8HSS/0unV9lChoBmgJaA9DCIjzcAKT6XJAlIaUUpRoFU17BGgWR0DGvxFgUlAvdX2UKGgGaAloD0MItvgUACPxckCUhpRSlGgVTZcEaBZHQMa/PjSofjl1fZQoaAZoCWgPQwi9jGK55fZyQJSGlFKUaBVNkARoFkdAxr9MIyCWeHV9lChoBmgJaA9DCPWhC+pbGHNAlIaUUpRoFU1/BGgWR0DGv0/rUsnRdX2UKGgGaAloD0MIBcO5hhnuckCUhpRSlGgVTZUEaBZHQMa/qkJjUd91fZQoaAZoCWgPQwh6jPLMi+RyQJSGlFKUaBVNjwRoFkdAxr/P05EMLHV9lChoBmgJaA9DCBe5p6t7J3NAlIaUUpRoFU1gBGgWR0DGv+8ENe+mdX2UKGgGaAloD0MI6EoEqn/gckCUhpRSlGgVTZgEaBZHQMbAFCBoVVR1fZQoaAZoCWgPQwhYVpqUwuVyQJSGlFKUaBVNlARoFkdAxsBMmois4nV9lChoBmgJaA9DCExUbw0s6XJAlIaUUpRoFU2gBGgWR0DGwH2MqBmPdX2UKGgGaAloD0MIsHQ+PAvtckCUhpRSlGgVTY4EaBZHQMbAf60x/NJ1fZQoaAZoCWgPQwjD9L2GoPZyQJSGlFKUaBVNoQRoFkdAxsCziDujRHV9lChoBmgJaA9DCDnWxW00tnJAlIaUUpRoFU3dBGgWR0DGwMkI7eVLdX2UKGgGaAloD0MIb/QxH1DvckCUhpRSlGgVTbUEaBZHQMbA+9cB2fV1fZQoaAZoCWgPQwj/PXjtUslyQJSGlFKUaBVNrwRoFkdAxsD98lXzUnV9lChoBmgJaA9DCMy209YI63JAlIaUUpRoFU1yBGgWR0DGwU5SLqD9dX2UKGgGaAloD0MIv4I0YxHRckCUhpRSlGgVTa4EaBZHQMbBXNXxOL11fZQoaAZoCWgPQwiZ84x9Sf9yQJSGlFKUaBVNgARoFkdAxsFgjafzz3V9lChoBmgJaA9DCPloccawF3NAlIaUUpRoFU17BGgWR0DGwjosoUi7dX2UKGgGaAloD0MIjgJEwYzRckCUhpRSlGgVTccEaBZHQMbCVWicoYx1fZQoaAZoCWgPQwgeozzzMtxyQJSGlFKUaBVNlQRoFkdAxsJdH93r2XV9lChoBmgJaA9DCMTNqWQA6HJAlIaUUpRoFU2fBGgWR0DGwoexQizLdX2UKGgGaAloD0MIWI6QgbzXckCUhpRSlGgVTbEEaBZHQMbCk95yEL91fZQoaAZoCWgPQwjp1mt6EO9yQJSGlFKUaBVNjQRoFkdAxsKZCv5gxHV9lChoBmgJaA9DCNJwytw833JAlIaUUpRoFU2dBGgWR0DGwrNDhLoPdX2UKGgGaAloD0MIYeKPog6ickCUhpRSlGgVTeUEaBZHQMbCu8qnWJ91fZQoaAZoCWgPQwj6QV2kkApzQJSGlFKUaBVNeARoFkdAxsK+3BpHqnV9lChoBmgJaA9DCHQLXYkAs3JAlIaUUpRoFU3LBGgWR0DGwxIGwA2idX2UKGgGaAloD0MI7WRwlHwPc0CUhpRSlGgVTXcEaBZHQMbDNXyAhB91fZQoaAZoCWgPQwivfQG9cOhyQJSGlFKUaBVNvwRoFkdAxsNn9sJpnHV9lChoBmgJaA9DCM0GmWTk5HJAlIaUUpRoFU2UBGgWR0DGxHgrYoRadX2UKGgGaAloD0MIPDPBcC4Cc0CUhpRSlGgVTXMEaBZHQMbFafmcOLB1fZQoaAZoCWgPQwgZWTLHcvdyQJSGlFKUaBVNhwRoFkdAxsVy0VJti3V9lChoBmgJaA9DCBfyCG6k+3JAlIaUUpRoFU2KBGgWR0DGxbE6xPfsdX2UKGgGaAloD0MI1xcJbTnEckCUhpRSlGgVTaEEaBZHQMbF5T4DcM51fZQoaAZoCWgPQwg3FhQGpblyQJSGlFKUaBVNqwRoFkdAxsX54rSVnnV9lChoBmgJaA9DCFWFBmLZBHNAlIaUUpRoFU1mBGgWR0DGxlMANoaldX2UKGgGaAloD0MIm3Eaooq/ckCUhpRSlGgVTbkEaBZHQMbGYpYLb6B1fZQoaAZoCWgPQwh8YMd/Ae5yQJSGlFKUaBVNoQRoFkdAxsZi+IMz/XV9lChoBmgJaA9DCDnx1Y7iynJAlIaUUpRoFU2+BGgWR0DGxrTAaef7dX2UKGgGaAloD0MIGAeXjjkdc0CUhpRSlGgVTXIEaBZHQMbG4y6DoQp1fZQoaAZoCWgPQwjoMF9ewANzQJSGlFKUaBVNhgRoFkdAxsb0gJTl1nV9lChoBmgJaA9DCB8OEqJ8pXJAlIaUUpRoFU2+BGgWR0DGxxvEVFhHdX2UKGgGaAloD0MI09nJ4CjsckCUhpRSlGgVTXsEaBZHQMbHJe0gKWt1fZQoaAZoCWgPQwhKXp1jAOdyQJSGlFKUaBVNmQRoFkdAxsdZlNDc/XV9lChoBmgJaA9DCGHCaFa2+3JAlIaUUpRoFU14BGgWR0DGx3NloUSJdX2UKGgGaAloD0MI8nub/qzkckCUhpRSlGgVTZYEaBZHQMbHmqqXF991fZQoaAZoCWgPQwjGbworVe9yQJSGlFKUaBVNhQRoFkdAxsfXImw7knV9lChoBmgJaA9DCOoj8Icf4nJAlIaUUpRoFU2cBGgWR0DGx91Xo1UEdX2UKGgGaAloD0MIzCVV283kckCUhpRSlGgVTZkEaBZHQMbH+62WpqB1fZQoaAZoCWgPQwiTcYxkDxdzQJSGlFKUaBVNXQRoFkdAxsiEFHrhSHV9lChoBmgJaA9DCC6qRURx93JAlIaUUpRoFU2ABGgWR0DGyNum51/2dX2UKGgGaAloD0MILUFGQIUoc0CUhpRSlGgVTV0EaBZHQMbI6J5E+gV1fZQoaAZoCWgPQwifkQiN4P1yQJSGlFKUaBVNaQRoFkdAxsjvCswL3XV9lChoBmgJaA9DCCKKyRugx3JAlIaUUpRoFU2iBGgWR0DGyQPPLPlddX2UKGgGaAloD0MIbD6uDdX4ckCUhpRSlGgVTYgEaBZHQMbJEESmIj51fZQoaAZoCWgPQwjac5maRAtzQJSGlFKUaBVNdQRoFkdAxskcLUkOZ3V9lChoBmgJaA9DCBaiQ+CI6HJAlIaUUpRoFU19BGgWR0DGyT6bvw3HdX2UKGgGaAloD0MI0JhJ1Iv5ckCUhpRSlGgVTYEEaBZHQMbJP/e1rqN1fZQoaAZoCWgPQwhmLQWkve5yQJSGlFKUaBVNlgRoFkdAxsm+M/hVEXV9lChoBmgJaA9DCFBVoYHY8nJAlIaUUpRoFU2GBGgWR0DGyb/KnvUjdX2UKGgGaAloD0MISwSqf9D+ckCUhpRSlGgVTXMEaBZHQMbJ5waisXB1fZQoaAZoCWgPQwjAywwbZe1yQJSGlFKUaBVNlQRoFkdAxssWmF8G93V9lChoBmgJaA9DCDC6vDnc+3JAlIaUUpRoFU2QBGgWR0DGzARUcXFcdX2UKGgGaAloD0MIkh/xK1bYckCUhpRSlGgVTZUEaBZHQMbMEUlZ5iV1fZQoaAZoCWgPQwiGWP0RxvtyQJSGlFKUaBVNggRoFkdAxsw50SRKYnV9lChoBmgJaA9DCFCr6A8N+3JAlIaUUpRoFU2HBGgWR0DGzIJqGlANdX2UKGgGaAloD0MIVObmG5H3ckCUhpRSlGgVTZYEaBZHQMbMnOndfsx1fZQoaAZoCWgPQwiDaK1oM+FyQJSGlFKUaBVNfQRoFkdAxsz4v9LpR3V9lChoBmgJaA9DCDIBv0ZS6HJAlIaUUpRoFU2RBGgWR0DGzPtF+d9VdX2UKGgGaAloD0MIkX77OvDxckCUhpRSlGgVTY0EaBZHQMbNGh5xBE91fZQoaAZoCWgPQwhIpkOnZ/1yQJSGlFKUaBVNcwRoFkdAxs19225QQHV9lChoBmgJaA9DCATkS6hg8nJAlIaUUpRoFU2FBGgWR0DGzX4siB5HdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 929984, "buffer_size": 1000000, "batch_size": 128, "learning_starts": 100, "tau": 0.005, "gamma": 0.999, "gradient_steps": 32, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fe9b1502560>", "add": "<function ReplayBuffer.add at 0x7fe9b15025f0>", "sample": "<function ReplayBuffer.sample at 0x7fe9b1502680>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe9b1502710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9b1555ed0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "system_info": {"OS": "Linux-5.17.5-zen1-1-zen-x86_64-with-arch #1 ZEN SMP PREEMPT Wed, 27 Apr 2022 20:56:14 +0000", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d588a39fc09177f78cd65fa81d9f45c6f7ed2e5954f1f4c99b7aa7319778e957
3
+ size 437668
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 302.9440686507828, "std_reward": 1.8154824087521553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T14:54:12.640858"}