File size: 3,869 Bytes
fd2e523 a91d7fd 9a66c97 fd2e523 19f3515 a91d7fd 8a3da98 7a5d5a0 a91d7fd c7b22a3 53fe2cc dadb2e4 fd2e523 53fe2cc 7a5d5a0 53fe2cc 213a1f7 53fe2cc bbfc983 53fe2cc bbfc983 53fe2cc bbfc983 53fe2cc 19f3515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
tags:
- image-classification
- timm
- chart
- charts
- fintwit
- stocks
- crypto
- finance
- financial
- financial charts
- graphs
- financial graphs
- plot
- plots
- financial plots
- cryptocurrency
- image-recognition
- recognition
library_name: timm
license: mit
datasets:
- StephanAkkerman/crypto-charts
- StephanAkkerman/stock-charts
- StephanAkkerman/fintwit-images
language:
- en
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: chart-recognizer
results:
- task:
type: image-classification
dataset:
name: Test Set
type: images
metrics:
- type: accuracy
value: 0.9782
- type: f1
value: 0.9685
pipeline_tag: image-classification
base_model: timm/efficientnet_b0.ra_in1k
---
# Chart Recognizer
chart-recognizer is a finetuned model for classifying images. It uses efficientnet as its base model, making it a fast and small model.
This model is trained on my own dataset of financial charts posted on Twitter, which can be found here [StephanAkkerman/fintwit-charts](https://huggingface.co/datasets/StephanAkkerman/fintwit-charts).
## Intended Uses
chart-recognizer is intended for classifying images, mainly images posted on social media.
## Dataset
chart-recognizer has been trained on my own dataset. So far I have not been able to find another image dataset about financial charts.
- [StephanAkkerman/crypto-charts](https://huggingface.co/datasets/StephanAkkerman/crypto-charts): 4,880 images.
- [StephanAkkerman/stock-charts](https://huggingface.co/datasets/StephanAkkerman/stock-charts): 5,203 images.
- [StephanAkkerman/fintwit-images](https://huggingface.co/datasets/StephanAkkerman/fintwit-images): 4,579 images.
### Example Images
The following images are not part of the training set and can be used for testing purposes.
#### Chart
![image/png](https://cdn-uploads.huggingface.co/production/uploads/648728961eee18b6bd1836bb/LWfEx-IhNLIsBPkbsvvnO.png)
#### Non-Chart
This can be any image that does not represent a (financial) chart.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/648728961eee18b6bd1836bb/mKdLqAVXG032eODbt4EXw.png)
## More Information
For a comprehensive overview, including the training setup and analysis of the model, visit the [chart-recognizer GitHub repository](https://github.com/StephanAkkerman/chart-recognizer).
## Usage
Using [HuggingFace's transformers library](https://huggingface.co/docs/transformers/index) the model can be converted into a pipeline for image classification.
```python
import timm
import torch
from PIL import Image
from timm.data import resolve_data_config, create_transform
# Load and set model to eval mode
model = timm.create_model("hf_hub:StephanAkkerman/chart-recognizer", pretrained=True)
model.eval()
# Create transform and get labels
transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))
labels = model.pretrained_cfg["label_names"]
# Load and preprocess image
image = Image.open("img/examples/tweet_example.png").convert("RGB")
x = transform(image).unsqueeze(0)
# Get model output and apply softmax
probabilities = torch.nn.functional.softmax(model(x)[0], dim=0)
# Map probabilities to labels
output = {label: prob.item() for label, prob in zip(labels, probabilities)}
# Print the predicted probabilities
print(output)
```
## Citing & Authors
If you use chart-recognizer in your research, please cite me as follows:
```
@misc{chart-recognizer,
author = {Stephan Akkerman},
title = {chart-recognizer: A Specialized Image Model for Financial Charts},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/StephanAkkerman/chart-recognizer}}
}
```
## License
This project is licensed under the MIT License. See the [LICENSE](https://choosealicense.com/licenses/mit/) file for details. |