File size: 3,782 Bytes
55569bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- StellarMilk/newsqa
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
  example_title: "Questions & Answers Generation Example 1" 
model-index:
- name: StellarMilk/t5-base-newsqa-qag-trained
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: StellarMilk/newsqa
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question & Answer Generation)
      type: bleu4_question_answer_generation
      value: 3.18
---

# Model Card of `StellarMilk/t5-base-newsqa-qag-trained`
This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question & answer pair generation task on the [StellarMilk/newsqa](https://huggingface.co/datasets/StellarMilk/newsqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [t5-base](https://huggingface.co/t5-base)   
- **Language:** en  
- **Training data:** [StellarMilk/newsqa](https://huggingface.co/datasets/StellarMilk/newsqa) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="StellarMilk/t5-base-newsqa-qag-trained")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "StellarMilk/t5-base-newsqa-qag-trained")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

```

## Evaluation


- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/StellarMilk/t5-base-newsqa-qag-trained/raw/main/eval/metric.first.answer.paragraph.questions_answers.StellarMilk_newsqa.default.json) 

| Score   | Type   | Dataset   |
|---------|--------|-----------|



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: StellarMilk/newsqa
 - dataset_name: default
 - input_types: ['paragraph']
 - output_types: ['questions_answers']
 - prefix_types: ['qag']
 - model: t5-base
 - max_length: 512
 - max_length_output: 512
 - epoch: 14
 - batch: 2
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 2
 - label_smoothing: 0.0

The full configuration can be found at [fine-tuning config file](https://huggingface.co/StellarMilk/t5-base-newsqa-qag-trained/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```