Miking98 commited on
Commit
dc210e8
·
1 Parent(s): cc30337

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -150
README.md CHANGED
@@ -2,197 +2,132 @@
2
  license: apache-2.0
3
  library_name: femr
4
  ---
5
- # CLMBR Demo (trained on synthetic data)
6
 
7
- This is a CLMBR model that was "pretrained" on synthetic data. The purpose of this model is to test code pipelines and demonstrate how to use CLMBR before applying for access to the official CLMBR release that was trained on real Stanford Hospital data.
8
 
9
- The synthetic data used for training is uniformly sampled random data with no intrinsic signal, so this model itself has no clinical or research use.
 
 
10
 
11
  ## Model Details
12
 
13
  ### Model Description
14
 
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
-
 
 
 
 
18
 
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
 
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
 
35
  ## Uses
36
 
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
 
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
 
61
- [More Information Needed]
62
 
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
 
69
  ## How to Get Started with the Model
70
 
71
  Use the code below to get started with the model.
72
 
73
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  ## Training Details
76
 
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
 
102
  ## Evaluation
103
 
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
 
108
- #### Testing Data
109
 
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
 
158
  ### Compute Infrastructure
159
 
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
 
166
  #### Software
167
 
168
- [More Information Needed]
169
 
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
 
174
  **BibTeX:**
175
 
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
 
192
  ## Model Card Authors [optional]
193
 
194
- [More Information Needed]
195
 
196
  ## Model Card Contact
197
 
198
- [More Information Needed]
 
2
  license: apache-2.0
3
  library_name: femr
4
  ---
5
+ # CLMBR-T-Base-Synthetic
6
 
7
+ This is a CLMBR model that was "pretrained" on **synthetic data**. The purpose of this model is to test code pipelines and demonstrate how to use CLMBR before applying for access to the official CLMBR release that was trained on real Stanford Hospital data.
8
 
9
+ The model architecture is CLMBR-T-Base (144M params), as originally described in [the EHRSHOT paper (Wornow et al. 2023)](https://arxiv.org/abs/2307.02028), and based on the architecture originally developed in [(Steinberg et al. 2021)](https://www.sciencedirect.com/science/article/pii/S1532046420302653)
10
+
11
+ The synthetic data used for training is uniformly sampled random data with no intrinsic signal, so **this model has no clinical or research use.**
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
+ - **Developed by:** Shah lab @ Stanford University
18
+ - **Funded by:** Stanford Healthcare
19
+ - **Shared by:** Shah lab @ Stanford University
20
+ - **Model type:** CLMBR [(Steinberg et al. 2021)](https://www.sciencedirect.com/science/article/pii/S1532046420302653)
21
+ - **Language(s) (NLP):** Electronic health record codes
22
+ - **License:** Apache 2.0
23
+ - **Finetuned from model:** N/A -- trained from scratch
24
 
25
+ ### Model Sources
 
 
 
 
 
 
26
 
27
+ - **Repository:** [https://github.com/som-shahlab/ehrshot-benchmark/](https://github.com/som-shahlab/ehrshot-benchmark/)
28
+ - **Paper:** [EHRSHOT: An EHR Benchmark for Few-Shot Evaluation of Foundation Models](https://arxiv.org/abs/2307.02028)
 
 
 
 
 
29
 
30
  ## Uses
31
 
32
+ This model generates dense representations for patients based on the structured data within their electronic health record.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ These representations can then be used for downstream tasks such as predicting diagnoses, detecting anomalies, or doing propensity score matching for causal inference.
35
 
36
+ However, please note that **this version of the model was trained on synthetic data.** Thus, the outputs will be random/meaningless.
37
 
 
 
 
 
 
38
 
39
  ## How to Get Started with the Model
40
 
41
  Use the code below to get started with the model.
42
 
43
+ First, download the necessary libraries.
44
+ ```bash
45
+ pip install femr torch
46
+ ```
47
+
48
+ Second, run the following Python script to run inference on a single patient:
49
+ ```python
50
+ import femr.models.transformer
51
+ import torch
52
+ import femr.models.tokenizer
53
+ import femr.models.dataloader
54
+ import datetime
55
+
56
+ model_name = "StanfordShahLab/clmbr-t-base-synthetic"
57
+
58
+ # Load tokenizer / batch loader
59
+ tokenizer = femr.models.tokenizer.FEMRTokenizer.from_pretrained(model_name)
60
+ batch_processor = femr.models.dataloader.FEMRBatchProcessor(tokenizer)
61
+
62
+ # Load model
63
+ model = femr.models.transformer.FEMRModel.from_pretrained(model_name)
64
+
65
+ # Create an example patient to run inference on
66
+ example_patient = {
67
+ 'patient_id': 30,
68
+ 'events': [{
69
+ 'time': datetime.datetime(2011, 5, 8),
70
+ 'measurements': [
71
+ {'code': 'SNOMED/1'},
72
+ ],
73
+ },
74
+ {
75
+ 'time': datetime.datetime(2012, 6, 9),
76
+ 'measurements': [
77
+ {'code': 'SNOMED/30'},
78
+ {'code': 'SNOMED/103'}
79
+ ],
80
+ }]
81
+ }
82
+ batch = batch_processor.convert_patient(example_patient, tensor_type="pt")
83
+
84
+ # Run model
85
+ with torch.no_grad():
86
+ patient_ids, times, reprs = model(batch)
87
+ print(patient_ids)
88
+ print(times)
89
+ print(reprs)
90
+ ```
91
 
92
  ## Training Details
93
 
94
+ The synthetic data used for training is uniformly sampled random data with no intrinsic signal, so this model itself has no clinical or research use.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  ## Evaluation
97
 
98
+ As this model was trained on random synthetic data, we expect it to perform no better than chance.
 
 
99
 
100
+ ## Technical Specifications
101
 
102
+ Please see [the EHRSHOT paper (Wornow et al. 2023)](https://arxiv.org/abs/2307.02028) for details on the model architecture and objective.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  ### Compute Infrastructure
105
 
106
+ This model was trained on a single V100 GPU.
 
 
 
 
107
 
108
  #### Software
109
 
110
+ For data loading / processing, this model leverages [FEMR](https://github.com/som-shahlab/femr/tree/main), a Python library for doing machine learning on EHR data at scale.
111
 
112
+ ## Citation
 
 
113
 
114
  **BibTeX:**
115
 
116
+ ```
117
+ @article{wornow2023ehrshot,
118
+ title={EHRSHOT: An EHR Benchmark for Few-Shot Evaluation of Foundation Models},
119
+ author={Michael Wornow and Rahul Thapa and Ethan Steinberg and Jason Fries and Nigam Shah},
120
+ year={2023},
121
+ eprint={2307.02028},
122
+ archivePrefix={arXiv},
123
+ primaryClass={cs.LG}
124
+ }
125
+ ```
 
 
 
 
 
126
 
127
  ## Model Card Authors [optional]
128
 
129
+ Michael Wornow, Ethan Steinberg, Rahul Thapa, Jason Fries, Nigam H. Shah
130
 
131
  ## Model Card Contact
132
 
133
+ Michael Wornow ([email protected])