zhjohnchan
commited on
Upload tokenization_chexagent.py
Browse files- tokenization_chexagent.py +298 -296
tokenization_chexagent.py
CHANGED
@@ -1,20 +1,8 @@
|
|
1 |
-
import json
|
2 |
-
from functools import lru_cache
|
3 |
-
from typing import TYPE_CHECKING
|
4 |
-
|
5 |
-
import regex as re
|
6 |
-
from transformers.tokenization_utils_base import TextInput
|
7 |
-
from transformers.utils import is_tf_available, is_torch_available, to_py_obj
|
8 |
-
|
9 |
-
if TYPE_CHECKING:
|
10 |
-
if is_torch_available():
|
11 |
-
import torch
|
12 |
-
if is_tf_available():
|
13 |
-
import tensorflow as tf
|
14 |
-
|
15 |
import os
|
16 |
import random
|
17 |
-
|
|
|
|
|
18 |
|
19 |
import matplotlib as mpl
|
20 |
import matplotlib.colors as mcolors
|
@@ -22,77 +10,39 @@ import matplotlib.colors as mplc
|
|
22 |
import matplotlib.figure as mplfigure
|
23 |
import numpy as np
|
24 |
import requests
|
|
|
25 |
import torch
|
26 |
from PIL import Image
|
27 |
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
28 |
from transformers import PreTrainedTokenizer, AddedToken
|
|
|
29 |
from transformers.utils import logging
|
30 |
|
|
|
|
|
|
|
31 |
logger = logging.get_logger(__name__)
|
32 |
|
33 |
-
VOCAB_FILES_NAMES = {
|
34 |
-
"vocab_file": "vocab.json",
|
35 |
-
"merges_file": "merges.txt",
|
36 |
-
}
|
37 |
|
38 |
PRETRAINED_VOCAB_FILES_MAP = {
|
39 |
"vocab_file": {
|
40 |
-
"
|
41 |
},
|
42 |
-
"
|
43 |
-
"
|
44 |
},
|
45 |
}
|
46 |
-
|
47 |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
48 |
-
"
|
49 |
}
|
|
|
50 |
|
51 |
-
IMG_TOKEN_SPAN =
|
52 |
|
53 |
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
54 |
|
55 |
|
56 |
-
@lru_cache()
|
57 |
-
def bytes_to_unicode():
|
58 |
-
"""
|
59 |
-
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
60 |
-
characters the bpe code barfs on.
|
61 |
-
|
62 |
-
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
63 |
-
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
64 |
-
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
65 |
-
tables between utf-8 bytes and unicode strings.
|
66 |
-
"""
|
67 |
-
bs = (
|
68 |
-
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(
|
69 |
-
range(ord("®"), ord("ÿ") + 1))
|
70 |
-
)
|
71 |
-
cs = bs[:]
|
72 |
-
n = 0
|
73 |
-
for b in range(2 ** 8):
|
74 |
-
if b not in bs:
|
75 |
-
bs.append(b)
|
76 |
-
cs.append(2 ** 8 + n)
|
77 |
-
n += 1
|
78 |
-
cs = [chr(n) for n in cs]
|
79 |
-
return dict(zip(bs, cs))
|
80 |
-
|
81 |
-
|
82 |
-
def get_pairs(word):
|
83 |
-
"""
|
84 |
-
Return set of symbol pairs in a word.
|
85 |
-
|
86 |
-
Word is represented as tuple of symbols (symbols being variable-length strings).
|
87 |
-
"""
|
88 |
-
pairs = set()
|
89 |
-
prev_char = word[0]
|
90 |
-
for char in word[1:]:
|
91 |
-
pairs.add((prev_char, char))
|
92 |
-
prev_char = char
|
93 |
-
return pairs
|
94 |
-
|
95 |
-
|
96 |
def _list_find(
|
97 |
input_list: List[Any],
|
98 |
candidates: Tuple[Any],
|
@@ -143,14 +93,18 @@ class CheXagentTokenizer(PreTrainedTokenizer):
|
|
143 |
def __init__(
|
144 |
self,
|
145 |
vocab_file,
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
bos_token="<|endoftext|>",
|
150 |
-
eos_token="<|endoftext|>",
|
151 |
pad_token=None,
|
152 |
-
|
153 |
-
add_bos_token=
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
image_start_tag='<|img|>',
|
155 |
image_end_tag='<|/img|>',
|
156 |
image_pad_tag='<|imgpad|>',
|
@@ -162,38 +116,43 @@ class CheXagentTokenizer(PreTrainedTokenizer):
|
|
162 |
quad_end_tag='<|/quad|>',
|
163 |
**kwargs,
|
164 |
):
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
self.
|
174 |
-
self.
|
175 |
-
self.
|
176 |
-
self.
|
177 |
-
with open(merges_file, encoding="utf-8") as merges_handle:
|
178 |
-
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
179 |
-
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
180 |
-
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
181 |
-
self.cache = {}
|
182 |
-
self.add_prefix_space = add_prefix_space
|
183 |
-
|
184 |
-
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
185 |
-
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
186 |
super().__init__(
|
187 |
-
errors=errors,
|
188 |
-
unk_token=unk_token,
|
189 |
bos_token=bos_token,
|
190 |
eos_token=eos_token,
|
|
|
191 |
pad_token=pad_token,
|
192 |
-
add_prefix_space=add_prefix_space,
|
193 |
add_bos_token=add_bos_token,
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
**kwargs,
|
195 |
)
|
196 |
-
|
197 |
self.image_start_tag = image_start_tag
|
198 |
self.image_end_tag = image_end_tag
|
199 |
self.image_pad_tag = image_pad_tag
|
@@ -229,69 +188,55 @@ class CheXagentTokenizer(PreTrainedTokenizer):
|
|
229 |
self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag)
|
230 |
self.chat_template = DEFAULT_CHAT_TEMPLATE
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
@property
|
233 |
def vocab_size(self):
|
234 |
-
|
|
|
235 |
|
236 |
def get_vocab(self):
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
return self.cache[token]
|
242 |
-
word = tuple(token)
|
243 |
-
pairs = get_pairs(word)
|
244 |
-
|
245 |
-
if not pairs:
|
246 |
-
return token
|
247 |
-
|
248 |
-
while True:
|
249 |
-
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
250 |
-
if bigram not in self.bpe_ranks:
|
251 |
-
break
|
252 |
-
first, second = bigram
|
253 |
-
new_word = []
|
254 |
-
i = 0
|
255 |
-
while i < len(word):
|
256 |
-
try:
|
257 |
-
j = word.index(first, i)
|
258 |
-
except ValueError:
|
259 |
-
new_word.extend(word[i:])
|
260 |
-
break
|
261 |
-
else:
|
262 |
-
new_word.extend(word[i:j])
|
263 |
-
i = j
|
264 |
-
|
265 |
-
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
266 |
-
new_word.append(first + second)
|
267 |
-
i += 2
|
268 |
-
else:
|
269 |
-
new_word.append(word[i])
|
270 |
-
i += 1
|
271 |
-
new_word = tuple(new_word)
|
272 |
-
word = new_word
|
273 |
-
if len(word) == 1:
|
274 |
-
break
|
275 |
-
else:
|
276 |
-
pairs = get_pairs(word)
|
277 |
-
word = " ".join(word)
|
278 |
-
self.cache[token] = word
|
279 |
-
return word
|
280 |
-
|
281 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
282 |
-
if self.add_bos_token:
|
283 |
-
bos_token_ids = [self.bos_token_id]
|
284 |
-
else:
|
285 |
-
bos_token_ids = []
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
return output + bos_token_ids + token_ids_1
|
293 |
|
294 |
-
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
295 |
def _encode_imgurl(img_tokens):
|
296 |
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
297 |
img_tokens = img_tokens[1:-1]
|
@@ -303,126 +248,24 @@ class CheXagentTokenizer(PreTrainedTokenizer):
|
|
303 |
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
304 |
return out_img_tokens
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
309 |
|
310 |
-
|
311 |
-
"""Tokenize a string."""
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
self.byte_encoder[b] for b in token.encode("utf-8")
|
317 |
-
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
318 |
-
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
319 |
-
return bpe_tokens
|
320 |
-
|
321 |
-
def _convert_token_to_id(self, token):
|
322 |
-
"""Converts a token (str) in an id using the vocab."""
|
323 |
-
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
324 |
-
|
325 |
-
def _convert_id_to_token(self, index):
|
326 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
327 |
-
return self.decoder.get(index)
|
328 |
-
|
329 |
-
def convert_tokens_to_string(self, tokens):
|
330 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
331 |
-
text = "".join(tokens)
|
332 |
-
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
333 |
-
return text
|
334 |
-
|
335 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
336 |
-
if not os.path.isdir(save_directory):
|
337 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
338 |
-
return
|
339 |
-
vocab_file = os.path.join(
|
340 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
341 |
-
)
|
342 |
-
merge_file = os.path.join(
|
343 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
344 |
-
)
|
345 |
-
|
346 |
-
with open(vocab_file, "w", encoding="utf-8") as f:
|
347 |
-
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
348 |
-
|
349 |
-
index = 0
|
350 |
-
with open(merge_file, "w", encoding="utf-8") as writer:
|
351 |
-
writer.write("#version: 0.2\n")
|
352 |
-
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
353 |
-
if index != token_index:
|
354 |
-
logger.warning(
|
355 |
-
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
356 |
-
" Please check that the tokenizer is not corrupted!"
|
357 |
-
)
|
358 |
-
index = token_index
|
359 |
-
writer.write(" ".join(bpe_tokens) + "\n")
|
360 |
-
index += 1
|
361 |
-
|
362 |
-
return vocab_file, merge_file
|
363 |
-
|
364 |
-
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
365 |
-
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
366 |
-
if is_split_into_words or add_prefix_space:
|
367 |
-
text = " " + text
|
368 |
-
return (text, kwargs)
|
369 |
-
|
370 |
-
def decode(
|
371 |
-
self,
|
372 |
-
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
373 |
-
skip_special_tokens: bool = False,
|
374 |
-
clean_up_tokenization_spaces: bool = None,
|
375 |
-
truncate_before_pattern: Optional[List[str]] = None,
|
376 |
-
**kwargs,
|
377 |
-
) -> str:
|
378 |
-
"""
|
379 |
-
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
380 |
-
tokens and clean up tokenization spaces.
|
381 |
-
|
382 |
-
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
383 |
-
|
384 |
-
Args:
|
385 |
-
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
386 |
-
List of tokenized input ids. Can be obtained using the `__call__` method.
|
387 |
-
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
388 |
-
Whether or not to remove special tokens in the decoding.
|
389 |
-
clean_up_tokenization_spaces (`bool`, *optional*):
|
390 |
-
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
391 |
-
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
|
392 |
-
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
|
393 |
-
A list of regular expression strings that will be used to truncate the returned string. This can be
|
394 |
-
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
|
395 |
-
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
|
396 |
-
kwargs (additional keyword arguments, *optional*):
|
397 |
-
Will be passed to the underlying model specific decode method.
|
398 |
-
|
399 |
-
Returns:
|
400 |
-
`str`: The decoded sentence.
|
401 |
-
"""
|
402 |
-
|
403 |
-
token_ids = to_py_obj(token_ids)
|
404 |
-
|
405 |
-
decoded_text = self._decode(
|
406 |
-
token_ids=token_ids,
|
407 |
-
skip_special_tokens=skip_special_tokens,
|
408 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
409 |
-
**kwargs,
|
410 |
-
)
|
411 |
-
|
412 |
-
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
|
413 |
-
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
|
414 |
-
|
415 |
-
return decoded_text
|
416 |
|
417 |
def _decode(
|
418 |
self,
|
419 |
-
token_ids: List[int],
|
420 |
skip_special_tokens: bool = False,
|
421 |
-
|
422 |
-
spaces_between_special_tokens: bool = True,
|
423 |
**kwargs,
|
424 |
) -> str:
|
425 |
-
|
426 |
def _decode_imgurl(img_token_ids):
|
427 |
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
428 |
img_token_ids = img_token_ids[1:-1]
|
@@ -430,39 +273,37 @@ class CheXagentTokenizer(PreTrainedTokenizer):
|
|
430 |
return [self.img_start_id] + img_token_ids + [self.img_end_id]
|
431 |
|
432 |
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
433 |
-
|
434 |
-
|
435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
)
|
437 |
|
438 |
-
def truncate(self, completion, truncate_before_pattern):
|
439 |
-
def find_re(string, pattern, start_pos):
|
440 |
-
m = pattern.search(string, start_pos)
|
441 |
-
return m.start() if m else -1
|
442 |
-
|
443 |
-
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
|
444 |
-
|
445 |
-
prints = list(re.finditer("^print", completion, re.MULTILINE))
|
446 |
-
|
447 |
-
if len(prints) > 1:
|
448 |
-
completion = completion[: prints[1].start()]
|
449 |
-
|
450 |
-
defs = list(re.finditer("^def", completion, re.MULTILINE))
|
451 |
-
|
452 |
-
if len(defs) > 1:
|
453 |
-
completion = completion[: defs[1].start()]
|
454 |
-
|
455 |
-
start_pos = 0
|
456 |
-
|
457 |
-
terminals_pos = [
|
458 |
-
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
|
459 |
-
]
|
460 |
-
|
461 |
-
if len(terminals_pos) > 0:
|
462 |
-
return completion[: min(terminals_pos)]
|
463 |
-
else:
|
464 |
-
return completion
|
465 |
-
|
466 |
def from_list_format(self, list_format: List[Dict]):
|
467 |
text = ''
|
468 |
num_images = 0
|
@@ -535,6 +376,167 @@ class CheXagentTokenizer(PreTrainedTokenizer):
|
|
535 |
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
536 |
return visualizer.output
|
537 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
|
539 |
class VisImage:
|
540 |
def __init__(self, img, scale=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
+
import unicodedata
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import TYPE_CHECKING, Dict, List, Tuple, Union, Any, Callable, Optional
|
6 |
|
7 |
import matplotlib as mpl
|
8 |
import matplotlib.colors as mcolors
|
|
|
10 |
import matplotlib.figure as mplfigure
|
11 |
import numpy as np
|
12 |
import requests
|
13 |
+
import sentencepiece as spm
|
14 |
import torch
|
15 |
from PIL import Image
|
16 |
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
17 |
from transformers import PreTrainedTokenizer, AddedToken
|
18 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
19 |
from transformers.utils import logging
|
20 |
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from transformers.tokenization_utils_base import TextInput
|
23 |
+
|
24 |
logger = logging.get_logger(__name__)
|
25 |
|
26 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
|
|
|
|
|
|
27 |
|
28 |
PRETRAINED_VOCAB_FILES_MAP = {
|
29 |
"vocab_file": {
|
30 |
+
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
|
31 |
},
|
32 |
+
"tokenizer_file": {
|
33 |
+
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
|
34 |
},
|
35 |
}
|
|
|
36 |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
37 |
+
"hf-internal-testing/llama-tokenizer": 2048,
|
38 |
}
|
39 |
+
SPIECE_UNDERLINE = "▁"
|
40 |
|
41 |
+
IMG_TOKEN_SPAN = 256
|
42 |
|
43 |
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def _list_find(
|
47 |
input_list: List[Any],
|
48 |
candidates: Tuple[Any],
|
|
|
93 |
def __init__(
|
94 |
self,
|
95 |
vocab_file,
|
96 |
+
unk_token="<unk>",
|
97 |
+
bos_token="<s>",
|
98 |
+
eos_token="</s>",
|
|
|
|
|
99 |
pad_token=None,
|
100 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
101 |
+
add_bos_token=True,
|
102 |
+
add_eos_token=False,
|
103 |
+
clean_up_tokenization_spaces=False,
|
104 |
+
use_default_system_prompt=False,
|
105 |
+
spaces_between_special_tokens=False,
|
106 |
+
legacy=None,
|
107 |
+
errors="replace",
|
108 |
image_start_tag='<|img|>',
|
109 |
image_end_tag='<|/img|>',
|
110 |
image_pad_tag='<|imgpad|>',
|
|
|
116 |
quad_end_tag='<|/quad|>',
|
117 |
**kwargs,
|
118 |
):
|
119 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
120 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
121 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
122 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
123 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
124 |
+
|
125 |
+
if legacy is None:
|
126 |
+
logger.warning_once(
|
127 |
+
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
128 |
+
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
129 |
+
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
130 |
+
" means, and thoroughly read the reason why this was added as explained in"
|
131 |
+
" https://github.com/huggingface/transformers/pull/24565"
|
132 |
+
)
|
133 |
+
legacy = True
|
134 |
|
135 |
+
self.legacy = legacy
|
136 |
+
self.vocab_file = vocab_file
|
137 |
+
self.add_bos_token = add_bos_token
|
138 |
+
self.add_eos_token = add_eos_token
|
139 |
+
self.use_default_system_prompt = use_default_system_prompt
|
140 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
super().__init__(
|
|
|
|
|
142 |
bos_token=bos_token,
|
143 |
eos_token=eos_token,
|
144 |
+
unk_token=unk_token,
|
145 |
pad_token=pad_token,
|
|
|
146 |
add_bos_token=add_bos_token,
|
147 |
+
add_eos_token=add_eos_token,
|
148 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
149 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
150 |
+
use_default_system_prompt=use_default_system_prompt,
|
151 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
152 |
+
legacy=legacy,
|
153 |
**kwargs,
|
154 |
)
|
155 |
+
self.errors = errors # how to handle errors in decoding
|
156 |
self.image_start_tag = image_start_tag
|
157 |
self.image_end_tag = image_end_tag
|
158 |
self.image_pad_tag = image_pad_tag
|
|
|
188 |
self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag)
|
189 |
self.chat_template = DEFAULT_CHAT_TEMPLATE
|
190 |
|
191 |
+
@property
|
192 |
+
def unk_token_length(self):
|
193 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
194 |
+
|
195 |
+
def get_spm_processor(self, from_slow=False):
|
196 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
197 |
+
if self.legacy or from_slow: # no dependency on protobuf
|
198 |
+
tokenizer.Load(self.vocab_file)
|
199 |
+
return tokenizer
|
200 |
+
|
201 |
+
with open(self.vocab_file, "rb") as f:
|
202 |
+
sp_model = f.read()
|
203 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
204 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
205 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
206 |
+
normalizer_spec.add_dummy_prefix = False
|
207 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
208 |
+
sp_model = model.SerializeToString()
|
209 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
210 |
+
return tokenizer
|
211 |
+
|
212 |
+
def __getstate__(self):
|
213 |
+
state = self.__dict__.copy()
|
214 |
+
state["sp_model"] = None
|
215 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
216 |
+
return state
|
217 |
+
|
218 |
+
def __setstate__(self, d):
|
219 |
+
self.__dict__ = d
|
220 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
221 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
222 |
+
|
223 |
@property
|
224 |
def vocab_size(self):
|
225 |
+
"""Returns vocab size"""
|
226 |
+
return self.sp_model.get_piece_size()
|
227 |
|
228 |
def get_vocab(self):
|
229 |
+
"""Returns vocab as a dict"""
|
230 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
231 |
+
vocab.update(self.added_tokens_encoder)
|
232 |
+
return vocab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
235 |
+
"""
|
236 |
+
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
237 |
+
first token is special.
|
238 |
+
"""
|
|
|
239 |
|
|
|
240 |
def _encode_imgurl(img_tokens):
|
241 |
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
242 |
img_tokens = img_tokens[1:-1]
|
|
|
248 |
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
249 |
return out_img_tokens
|
250 |
|
251 |
+
if self.legacy or len(text) == 0:
|
252 |
+
tokens = super().tokenize(text, **kwargs)
|
253 |
+
tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
254 |
+
return tokens
|
255 |
|
256 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
|
|
257 |
|
258 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
259 |
+
tokens = tokens[1:]
|
260 |
+
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
def _decode(
|
263 |
self,
|
264 |
+
token_ids: Union[int, List[int]],
|
265 |
skip_special_tokens: bool = False,
|
266 |
+
errors: str = None,
|
|
|
267 |
**kwargs,
|
268 |
) -> str:
|
|
|
269 |
def _decode_imgurl(img_token_ids):
|
270 |
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
271 |
img_token_ids = img_token_ids[1:-1]
|
|
|
273 |
return [self.img_start_id] + img_token_ids + [self.img_end_id]
|
274 |
|
275 |
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
276 |
+
return super()._decode(token_ids, errors=errors or self.errors)
|
277 |
+
|
278 |
+
def to_list_format(self, text: str):
|
279 |
+
text = unicodedata.normalize("NFC", text)
|
280 |
+
token_ids = self.encode(text)[1:]
|
281 |
+
|
282 |
+
def _encode_vl_info(tokens):
|
283 |
+
if len(tokens) == 0:
|
284 |
+
return []
|
285 |
+
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
|
286 |
+
key = 'image'
|
287 |
+
tokens = tokens[: tokens.index(self.img_pad_id)]
|
288 |
+
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
|
289 |
+
key = 'ref'
|
290 |
+
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
|
291 |
+
key = 'box'
|
292 |
+
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
|
293 |
+
key = 'quad'
|
294 |
+
else:
|
295 |
+
key = 'text'
|
296 |
+
return [{key: self.decode(tokens)}]
|
297 |
+
return [{key: self.decode(tokens[1:-1])}]
|
298 |
+
|
299 |
+
return _replace_closed_tag(
|
300 |
+
token_ids,
|
301 |
+
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
|
302 |
+
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
|
303 |
+
_encode_vl_info,
|
304 |
+
_encode_vl_info,
|
305 |
)
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
def from_list_format(self, list_format: List[Dict]):
|
308 |
text = ''
|
309 |
num_images = 0
|
|
|
376 |
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
377 |
return visualizer.output
|
378 |
|
379 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
380 |
+
def _tokenize(self, text, **kwargs):
|
381 |
+
"""
|
382 |
+
Returns a tokenized string.
|
383 |
+
|
384 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
385 |
+
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
386 |
+
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
387 |
+
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
388 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
389 |
+
"""
|
390 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
391 |
+
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
392 |
+
return tokens
|
393 |
+
|
394 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
395 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
396 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
397 |
+
return tokens[self.unk_token_length:] if len(tokens) >= self.unk_token_length else tokens
|
398 |
+
|
399 |
+
def _convert_token_to_id(self, token):
|
400 |
+
"""Converts a token (str) in an id using the vocab."""
|
401 |
+
return self.sp_model.piece_to_id(token)
|
402 |
+
|
403 |
+
def _convert_id_to_token(self, index):
|
404 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
405 |
+
token = self.sp_model.IdToPiece(index)
|
406 |
+
return token
|
407 |
+
|
408 |
+
def convert_tokens_to_string(self, tokens):
|
409 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
410 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
411 |
+
if tokens[0].startswith(SPIECE_UNDERLINE):
|
412 |
+
tokens[0] = tokens[0][1:]
|
413 |
+
|
414 |
+
current_sub_tokens = []
|
415 |
+
out_string = ""
|
416 |
+
prev_is_special = False
|
417 |
+
for i, token in enumerate(tokens):
|
418 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
419 |
+
if token in self.all_special_tokens:
|
420 |
+
if not prev_is_special and i != 0 and self.legacy:
|
421 |
+
out_string += " "
|
422 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
423 |
+
prev_is_special = True
|
424 |
+
current_sub_tokens = []
|
425 |
+
else:
|
426 |
+
current_sub_tokens.append(token)
|
427 |
+
prev_is_special = False
|
428 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
429 |
+
return out_string
|
430 |
+
|
431 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
432 |
+
"""
|
433 |
+
Save the vocabulary and special tokens file to a directory.
|
434 |
+
|
435 |
+
Args:
|
436 |
+
save_directory (`str`):
|
437 |
+
The directory in which to save the vocabulary.
|
438 |
+
|
439 |
+
Returns:
|
440 |
+
`Tuple(str)`: Paths to the files saved.
|
441 |
+
"""
|
442 |
+
if not os.path.isdir(save_directory):
|
443 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
444 |
+
return
|
445 |
+
out_vocab_file = os.path.join(
|
446 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
447 |
+
)
|
448 |
+
|
449 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
450 |
+
copyfile(self.vocab_file, out_vocab_file)
|
451 |
+
elif not os.path.isfile(self.vocab_file):
|
452 |
+
with open(out_vocab_file, "wb") as fi:
|
453 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
454 |
+
fi.write(content_spiece_model)
|
455 |
+
|
456 |
+
return (out_vocab_file,)
|
457 |
+
|
458 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
459 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
460 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
461 |
+
|
462 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
463 |
+
|
464 |
+
if token_ids_1 is not None:
|
465 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
466 |
+
|
467 |
+
return output
|
468 |
+
|
469 |
+
def get_special_tokens_mask(
|
470 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
471 |
+
already_has_special_tokens: bool = False
|
472 |
+
) -> List[int]:
|
473 |
+
"""
|
474 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
475 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
token_ids_0 (`List[int]`):
|
479 |
+
List of IDs.
|
480 |
+
token_ids_1 (`List[int]`, *optional*):
|
481 |
+
Optional second list of IDs for sequence pairs.
|
482 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
483 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
487 |
+
"""
|
488 |
+
if already_has_special_tokens:
|
489 |
+
return super().get_special_tokens_mask(
|
490 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
491 |
+
)
|
492 |
+
|
493 |
+
bos_token_id = [1] if self.add_bos_token else []
|
494 |
+
eos_token_id = [1] if self.add_eos_token else []
|
495 |
+
|
496 |
+
if token_ids_1 is None:
|
497 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
498 |
+
return (
|
499 |
+
bos_token_id
|
500 |
+
+ ([0] * len(token_ids_0))
|
501 |
+
+ eos_token_id
|
502 |
+
+ bos_token_id
|
503 |
+
+ ([0] * len(token_ids_1))
|
504 |
+
+ eos_token_id
|
505 |
+
)
|
506 |
+
|
507 |
+
def create_token_type_ids_from_sequences(
|
508 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
509 |
+
) -> List[int]:
|
510 |
+
"""
|
511 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
512 |
+
sequence pair mask has the following format:
|
513 |
+
|
514 |
+
```
|
515 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
516 |
+
| first sequence | second sequence |
|
517 |
+
```
|
518 |
+
|
519 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
520 |
+
|
521 |
+
Args:
|
522 |
+
token_ids_0 (`List[int]`):
|
523 |
+
List of ids.
|
524 |
+
token_ids_1 (`List[int]`, *optional*):
|
525 |
+
Optional second list of IDs for sequence pairs.
|
526 |
+
|
527 |
+
Returns:
|
528 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
529 |
+
"""
|
530 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
531 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
532 |
+
|
533 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
534 |
+
|
535 |
+
if token_ids_1 is not None:
|
536 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
537 |
+
|
538 |
+
return output
|
539 |
+
|
540 |
|
541 |
class VisImage:
|
542 |
def __init__(self, img, scale=1.0):
|