CheXagent

πŸ“ Paper β€’ πŸ€— Hugging Face β€’ 🧩 Github β€’ πŸͺ„ Project

✨ Latest News

🎬 Get Started

import io

import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer

# step 1: Setup constant
model_name = "StanfordAIMI/CheXagent-2-3b"
dtype = torch.bfloat16
device = "cuda"

# step 2: Load Processor and Model
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
model = model.to(dtype)
model.eval()

# step 3: Inference
query = tokenizer.from_list_format([*[{'image': path} for path in paths], {'text': prompt}])
conv = [{"from": "system", "value": "You are a helpful assistant."}, {"from": "human", "value": query}]
input_ids = tokenizer.apply_chat_template(conv, add_generation_prompt=True, return_tensors="pt")
output = model.generate(
    input_ids.to(device), do_sample=False, num_beams=1, temperature=1., top_p=1., use_cache=True,
    max_new_tokens=512
)[0]
response = tokenizer.decode(output[input_ids.size(1):-1])

✏️ Citation

@article{chexagent-2024,
  title={CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation},
  author={Chen, Zhihong and Varma, Maya and Delbrouck, Jean-Benoit and Paschali, Magdalini and Blankemeier, Louis and Veen, Dave Van and Valanarasu, Jeya Maria Jose and Youssef, Alaa and Cohen, Joseph Paul and Reis, Eduardo Pontes and Tsai, Emily B. and Johnston, Andrew and Olsen, Cameron and Abraham, Tanishq Mathew and Gatidis, Sergios and Chaudhari, Akshay S and Langlotz, Curtis},
  journal={arXiv preprint arXiv:2401.12208},
  url={https://arxiv.org/abs/2401.12208},
  year={2024}
}
Downloads last month
660
Safetensors
Model size
3.14B params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Collections including StanfordAIMI/CheXagent-2-3b