Spestly commited on
Commit
04e45a8
·
verified ·
1 Parent(s): 49ac1f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -7
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: unsloth/qwen2.5-3b-instruct-bnb-4bit
3
  tags:
4
  - text-generation-inference
5
  - transformers
@@ -10,13 +10,76 @@ license: apache-2.0
10
  language:
11
  - en
12
  ---
 
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** Spestly
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-bnb-4bit
19
 
20
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
1
  ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
  tags:
4
  - text-generation-inference
5
  - transformers
 
10
  language:
11
  - en
12
  ---
13
+ ![Header](https://raw.githubusercontent.com/Aayan-Mishra/Images/refs/heads/main/Athena.png)
14
 
15
+ # Athena-1 3B:
16
 
17
+ Athena-1 3B is a fine-tuned, instruction-following large language model derived from [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct). It is designed to provide efficient, high-quality text generation while maintaining a compact size. Athena 3B is optimized for lightweight applications, conversational AI, and structured data tasks, making it ideal for real-world use cases where performance and resource efficiency are critical.
 
 
18
 
19
+ ---
20
+
21
+ ## Key Features
22
+
23
+ ### ⚡ Lightweight and Efficient
24
+ - **Compact Size**: At just **3.09 billion parameters**, Athena-1 3B offers excellent performance with reduced computational requirements.
25
+ - **Instruction Following**: Fine-tuned for precise and reliable adherence to user prompts.
26
+ - **Coding and Mathematics**: Proficient in solving coding challenges and handling mathematical tasks.
27
+
28
+ ### 📖 Long-Context Understanding
29
+ - **Context Length**: Supports up to **32,768 tokens**, enabling the processing of moderately lengthy documents or conversations.
30
+ - **Token Generation**: Can generate up to **8K tokens** of output.
31
+
32
+ ### 🌍 Multilingual Support
33
+ - Supports **29+ languages**, including:
34
+ - English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
35
+ - Japanese, Korean, Vietnamese, Thai, Arabic, and more.
36
+
37
+ ### 📊 Structured Data & Outputs
38
+ - **Structured Data Interpretation**: Processes structured formats like tables and JSON.
39
+ - **Structured Output Generation**: Generates well-formatted outputs, including JSON and other structured formats.
40
+
41
+ ---
42
+
43
+ ## Model Details
44
+
45
+ - **Base Model**: [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
46
+ - **Architecture**: Transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias, and tied word embeddings.
47
+ - **Parameters**: 3.09B total (2.77B non-embedding).
48
+ - **Layers**: 36
49
+ - **Attention Heads**: 16 for Q, 2 for KV.
50
+ - **Context Length**: Up to **32,768 tokens**.
51
+
52
+ ---
53
+
54
+ ## Applications
55
+
56
+ Athena 3B is designed for a variety of real-world applications:
57
+ - **Conversational AI**: Build fast, responsive, and lightweight chatbots.
58
+ - **Code Generation**: Generate, debug, or explain code snippets.
59
+ - **Mathematical Problem Solving**: Assist with calculations and reasoning.
60
+ - **Document Processing**: Summarize and analyze moderately large documents.
61
+ - **Multilingual Applications**: Support for global use cases with diverse language requirements.
62
+ - **Structured Data**: Process and generate structured data, such as tables and JSON.
63
+
64
+ ---
65
+
66
+ ## Quickstart
67
+
68
+ Here’s how you can use Athena 3B for quick text generation:
69
+
70
+ ```python
71
+ # Use a pipeline as a high-level helper
72
+ from transformers import pipeline
73
+
74
+ messages = [
75
+ {"role": "user", "content": "Who are you?"},
76
+ ]
77
+ pipe = pipeline("text-generation", model="Spestly/Athena-1-3B")
78
+ pipe(messages)
79
+
80
+ # Load model directly
81
+ from transformers import AutoTokenizer, AutoModelForCausalLM
82
 
83
+ tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-3B")
84
+ model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-3B")
85
+ ```