VIRTUE Model Card
VIRTUE-2B-SCaR and VIRTUE-7B-SCaR are the official checkpoints for the paper "VIRTUE: Visual-Interactive Text-Image Universal Embedder" that are trained with MMEB-Train and SCaR-Train. VIRTUE is a visual-interactive text-image universal embedder consisting of a VLM as well as a segmentation model to enable the visual interaction modality for human interactions. In addition, we introduce the SCaR benchmark (train, eval), composed of 1M samples for visual-interactive image-to-text retrieval, to evaluate visual-interactive embedding capabilities. SCaR enables evaluation of advanced reasoning and compositional tasks in multimodal, visual-interaction-aware embedding scenarios that remain unexplored.
Model Checkpoints
SCaR Dataset
Experimental Results
MMEB
SCaR
Resources
How to Use
import os
import sys
import torch
import numpy as np
import json
import hydra
from hydra.core.global_hydra import GlobalHydra
from PIL import Image
# Add parent directory to path for src imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.arguments import ModelArguments, DataArguments, TrainingArguments
from src.model.model import MMEBModel
from src.model.processor import load_processor, VLM_IMAGE_TOKENS, get_backbone_name, process_vlm_inputs_fns
from transformers import AutoConfig
# Initialize Hydra for SAM2 loading
if not GlobalHydra().is_initialized():
hydra.initialize(config_path="./configs", version_base=None)
# Determinism
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(42)
model_dir = 'Sony/VIRTUE-2B-SCaR'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True, token=True)
# Build arguments directly (no YAML required)
model_args = ModelArguments(
model_name=model_dir,
checkpoint_path=None,
pooling="last",
normalize=True,
lora=False,
model_backbone='qwen2_vl',
)
persisted_sam = config.virtue_sam
model_args.sam = True
model_args.sam_config = {
"config_path": persisted_sam.get('config_path') if persisted_sam else None,
"checkpoint": persisted_sam.get('checkpoint') if persisted_sam else None,
"points_per_side": (persisted_sam.get('points_per_side') if persisted_sam else 16),
"feature_levels": (persisted_sam.get('feature_levels') if persisted_sam else 3),
}
data_args = DataArguments()
training_args = TrainingArguments()
processor = load_processor(model_args, data_args)
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
model.eval()
model = model.to(device, dtype=torch.bfloat16)
# Get model backbone and image token
model_backbone = get_backbone_name(hf_config=config)
image_token = VLM_IMAGE_TOKENS[model_backbone]
# Image + Text -> Text
image_path = '../assets/example.jpg'
image = Image.open(image_path).convert('RGB')
model_inputs = {
'text': [f"{image_token}\nRepresent the given image with the following question: What is in the image"],
'images': [image]
}
process_fn = process_vlm_inputs_fns[model_backbone]
inputs = process_fn(model_inputs, processor=processor, max_length=512)
device = next(model.parameters()).device
inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in inputs.items()}
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
qry_output = model(qry=inputs)["qry_reps"]
# Candidates for all scenarios
test_strings = ['A cat', 'A dog', 'A tiger']
# Scenario 1: No visual prompts (image only)
print("\n--- Similarities (no visual prompts) ---")
for string in test_strings:
cand_inputs = process_fn({'text': [string], 'images': [None]}, processor=processor)
cand_inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in cand_inputs.items()}
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
tgt_output = model(tgt=cand_inputs)["tgt_reps"]
sim = model.compute_similarity(qry_output, tgt_output)
print(f"no-prompt | {string} = {sim}")
'''
--- Similarities (no visual prompts) ---
no-prompt | A cat = tensor([[0.3030]], device='cuda:0')
no-prompt | A dog = tensor([[0.2453]], device='cuda:0')
no-prompt | A tiger = tensor([[0.1714]], device='cuda:0')
'''
# Scenario 2: Point prompts — two examples (left/right)
print("\n--- Similarities (point prompts) ---")
sam_size = 1024 # SAM2Transforms output size
point_examples = [(0.25, 0.5), (0.75, 0.5)]
for (px, py) in point_examples:
point_text = f"{image_token}\nFind the caption that best describes the segmented object, considering both local details and global context in the given image.\nReferring object point: ({int(px*image.size[0])}, {int(py*image.size[1])})"
q_inputs = process_fn({'text': [point_text], 'images': [image]}, processor=processor)
q_inputs['point'] = [px * sam_size, py * sam_size]
q_inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in q_inputs.items()}
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
point_qry = model(qry=q_inputs)["qry_reps"]
for string in test_strings:
cand_inputs = process_fn({'text': [string], 'images': [None]}, processor=processor)
cand_inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in cand_inputs.items()}
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
tgt_output = model(tgt=cand_inputs)["tgt_reps"]
sim = model.compute_similarity(point_qry, tgt_output)
print(f"point ({px:.2f},{py:.2f}) | {string} = {sim}")
'''
--- Similarities (point prompts) ---
point (0.25,0.50) | A cat = tensor([[0.1793]], device='cuda:0')
point (0.25,0.50) | A dog = tensor([[0.1339]], device='cuda:0')
point (0.25,0.50) | A tiger = tensor([[0.1314]], device='cuda:0')
point (0.75,0.50) | A cat = tensor([[0.2232]], device='cuda:0')
point (0.75,0.50) | A dog = tensor([[0.1742]], device='cuda:0')
point (0.75,0.50) | A tiger = tensor([[0.1692]], device='cuda:0')
'''
# Scenario 3: BBox prompts — two examples (left/right)
print("\n--- Similarities (bbox prompts) ---")
bbox_examples = [
(0.05, 0.20, 0.45, 0.80), # left
(0.55, 0.20, 0.95, 0.80), # right
]
for (x1, y1, x2, y2) in bbox_examples:
bbox_text = f"{image_token}\nFind the caption that best describes the object in the bounding box, considering both local details and global context in the given image.\nReferring object bbox: ({int(x1*image.size[0])}, {int(y1*image.size[1])}, {int(x2*image.size[0])}, {int(y2*image.size[1])})"
q_inputs = process_fn({'text': [bbox_text], 'images': [image]}, processor=processor)
q_inputs['bbox'] = [x1 * sam_size, y1 * sam_size, x2 * sam_size, y2 * sam_size]
q_inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in q_inputs.items()}
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
bbox_qry = model(qry=q_inputs)["qry_reps"]
for string in test_strings:
cand_inputs = process_fn({'text': [string], 'images': [None]}, processor=processor)
cand_inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in cand_inputs.items()}
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
tgt_output = model(tgt=cand_inputs)["tgt_reps"]
sim = model.compute_similarity(bbox_qry, tgt_output)
print(f"bbox ({x1:.2f},{y1:.2f},{x2:.2f},{y2:.2f}) | {string} = {sim}")
'''
--- Similarities (bbox prompts) ---
bbox (0.05,0.20,0.45,0.80) | A cat = tensor([[0.2100]], device='cuda:0')
bbox (0.05,0.20,0.45,0.80) | A dog = tensor([[0.1512]], device='cuda:0')
bbox (0.05,0.20,0.45,0.80) | A tiger = tensor([[0.1719]], device='cuda:0')
bbox (0.55,0.20,0.95,0.80) | A cat = tensor([[0.1583]], device='cuda:0')
bbox (0.55,0.20,0.95,0.80) | A dog = tensor([[0.1953]], device='cuda:0')
bbox (0.55,0.20,0.95,0.80) | A tiger = tensor([[0.1225]], device='cuda:0')
'''
Ethical Considerations
Note: This section is mainly taken from the AKI models.
This release is for research purposes only in support of an academic paper. Our models, datasets, and code are not specifically designed or evaluated for all downstream purposes. We strongly recommend users evaluate and address potential concerns related to accuracy, safety, and fairness before deploying this model. We encourage users to consider the common limitations of AI, comply with applicable laws, and leverage best practices when selecting use cases, particularly for high-risk scenarios where errors or misuse could significantly impact people’s lives, rights, or safety.
Citation
@article{wangICLR2026virtue,
author = {Wei-Yao Wang and
Kazuya Tateishi and
Qiyu Wu and
Shusuke Takahashi and
Yuki Mitsufuji},
title = {VIRTUE: Visual-Interactive Text-Image Universal Embedder},
journal = {arXiv preprint arXiv:2510.00523},
year = {2025}
}
- Downloads last month
- 49


