Sonatafyai commited on
Commit
338e04e
·
verified ·
1 Parent(s): 36093ab

Training complete

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: roberta-large-finetuned_ADEs_SonatafyAI
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # roberta-large-finetuned_ADEs_SonatafyAI
20
+
21
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2571
24
+ - Precision: 0.5269
25
+ - Recall: 0.6208
26
+ - F1: 0.5700
27
+ - Accuracy: 0.8859
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-07
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.7192 | 1.0 | 640 | 0.3366 | 0.4491 | 0.5202 | 0.4820 | 0.8653 |
59
+ | 0.3549 | 2.0 | 1280 | 0.2814 | 0.4982 | 0.6066 | 0.5471 | 0.8803 |
60
+ | 0.3118 | 3.0 | 1920 | 0.2653 | 0.5178 | 0.6186 | 0.5637 | 0.8831 |
61
+ | 0.2827 | 4.0 | 2560 | 0.2624 | 0.5276 | 0.6372 | 0.5772 | 0.8833 |
62
+ | 0.2741 | 5.0 | 3200 | 0.2571 | 0.5269 | 0.6208 | 0.5700 | 0.8859 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.40.2
68
+ - Pytorch 2.2.1+cu121
69
+ - Datasets 2.19.1
70
+ - Tokenizers 0.19.1