File size: 4,548 Bytes
4ca2340 a3a3367 4ca2340 c3e61b8 d588a07 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 cf095eb 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 4ca2340 7796e81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
widget:
- text: HENRIK DAUBJERG SØRENSEN HOLDING ApS
- text: NILAN HOLDING A/S
- text: ASTRID OG EINER VIGHOLTS LEGAT
- text: Rusbjerg Consulting
- text: D U I
- text: College360
- text: Telefonstandens pensionistforening af 1950
- text: Investeringsforeningen Formuepleje - Better World
- text: Kaptajnsgaard I/S
- text: DEN DANSKE PRESSES FÆLLESINDKØBS- FORENING
- text: Prins Henriks Skoles Ejendomsfond
- text: KRISTENSEN & CO. K/S
- text: P/S Obton Solenergi Mazovia
- text: FORSIKRINGSSELSKABET BRANDKASSEN G/S under frivillig likvidation
- text: Vildbjerg Elværk AmbA
- text: Struer kommune
- text: ISS Finance B.V.
- text: Superia IvS
- text: NÆSBY VANDVÆRK
- text: ONEBIT CONSULT SMBA
- text: Region Midtjylland
- text: FGU Sydøstjylland S/I
model-index:
- name: Sociovestix/lenu_DK
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: lenu
type: Sociovestix/lenu
config: DK
split: test
revision: 76da7696c49ebee8be7f521faa76ae99189bda34
metrics:
- type: f1
value: 0.9632649699365785
name: f1
- type: f1
value: 0.7183743983338228
name: f1 macro
args:
average: macro
---
# LENU - Legal Entity Name Understanding for Denmark
A [Danish Bert](https://huggingface.co/Maltehb/danish-bert-botxo) model fine-tuned on danish legal entity names (jurisdiction DK) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei)
(LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list).
---------------
<h1 align="center">
<a href="https://gleif.org">
<img src="https://www.gleif.org/assets/build/img/logo/gleif-logo-new.svg" width="220px" style="display: inherit">
</a>
</h1><br>
<h3 align="center">in collaboration with</h3>
<h1 align="center">
<a href="https://sociovestix.com">
<img src="https://sociovestix.com/img/svl_logo_centered.svg" width="700px" style="width: 100%">
</a>
</h1><br>
---------------
## Model Description
<!-- Provide a longer summary of what this model is. -->
The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and
[Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction.
See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task.
The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on danish legal entities and ELF Codes within the Jurisdiction "DK".
- **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix)
- **License:** Creative Commons (CC0) license
- **Finetuned from model [optional]:** Maltehb/danish-bert-botxo
- **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-)
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
An entity's legal form is a crucial component when verifying and screening organizational identity.
The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data.
The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from
GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks,
investment firms, corporations, governments, and other large organizations to retrospectively analyze
their master data, extract the legal form from the unstructured text of the legal name and
uniformly apply an ELF code to each entity type, according to the ISO 20275 standard.
# Licensing Information
This model, which is trained on LEI data, is available under Creative Commons (CC0) license.
See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data).
# Recommendations
Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities. |