File size: 4,548 Bytes
4ca2340
a3a3367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ca2340
 
 
c3e61b8
 
 
 
 
 
 
 
 
 
 
 
 
d588a07
 
 
 
 
4ca2340
 
7796e81
4ca2340
7796e81
 
4ca2340
7796e81
4ca2340
7796e81
 
cf095eb
7796e81
 
 
 
 
 
 
 
4ca2340
7796e81
4ca2340
 
 
 
 
7796e81
 
 
4ca2340
7796e81
4ca2340
7796e81
 
 
 
4ca2340
 
 
 
 
7796e81
 
 
 
 
 
 
4ca2340
 
7796e81
4ca2340
7796e81
 
4ca2340
7796e81
4ca2340
7796e81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
widget:
- text: HENRIK DAUBJERG SØRENSEN HOLDING ApS
- text: NILAN HOLDING A/S
- text: ASTRID OG EINER VIGHOLTS LEGAT
- text: Rusbjerg Consulting
- text: D U I
- text: College360
- text: Telefonstandens pensionistforening af 1950
- text: Investeringsforeningen Formuepleje - Better World
- text: Kaptajnsgaard I/S
- text: DEN DANSKE PRESSES FÆLLESINDKØBS- FORENING
- text: Prins Henriks Skoles Ejendomsfond
- text: KRISTENSEN & CO. K/S
- text: P/S Obton Solenergi Mazovia
- text: FORSIKRINGSSELSKABET BRANDKASSEN G/S under frivillig likvidation
- text: Vildbjerg Elværk AmbA
- text: Struer kommune
- text: ISS Finance B.V.
- text: Superia IvS
- text: NÆSBY VANDVÆRK
- text: ONEBIT CONSULT SMBA
- text: Region Midtjylland
- text: FGU Sydøstjylland S/I
model-index:
- name: Sociovestix/lenu_DK
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: lenu
      type: Sociovestix/lenu
      config: DK
      split: test
      revision: 76da7696c49ebee8be7f521faa76ae99189bda34
    metrics:
    - type: f1
      value: 0.9632649699365785
      name: f1
    - type: f1
      value: 0.7183743983338228
      name: f1 macro
      args:
        average: macro
---

# LENU - Legal Entity Name Understanding for Denmark

A [Danish Bert](https://huggingface.co/Maltehb/danish-bert-botxo) model fine-tuned on danish legal entity names (jurisdiction DK) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei)
(LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list).

---------------

<h1 align="center">
<a href="https://gleif.org">
<img src="https://www.gleif.org/assets/build/img/logo/gleif-logo-new.svg" width="220px" style="display: inherit">
</a>
</h1><br>
<h3 align="center">in collaboration with</h3> 
<h1 align="center">
<a href="https://sociovestix.com">
<img src="https://sociovestix.com/img/svl_logo_centered.svg" width="700px" style="width: 100%">
</a>
</h1><br>

---------------

## Model Description

<!-- Provide a longer summary of what this model is. -->

The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and
[Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction.
See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task.

The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on danish legal entities and ELF Codes within the Jurisdiction "DK".

- **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix)
- **License:** Creative Commons (CC0) license
- **Finetuned from model [optional]:** Maltehb/danish-bert-botxo
- **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-)

# Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

An entity's legal form is a crucial component when verifying and screening organizational identity.
The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data.
The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from
GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks, 
investment firms, corporations, governments, and other large organizations to retrospectively analyze
their master data, extract the legal form from the unstructured text of the legal name and
uniformly apply an ELF code to each entity type, according to the ISO 20275 standard.


# Licensing Information

This model, which is trained on LEI data, is available under Creative Commons (CC0) license. 
See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data).

# Recommendations

Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities.