File size: 3,106 Bytes
5a02de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: PRAli22/arat5-arabic-dialects-translation
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-finetuned-ar-to-arsl2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-finetuned-ar-to-arsl2

This model is a fine-tuned version of [PRAli22/arat5-arabic-dialects-translation](https://huggingface.co/PRAli22/arat5-arabic-dialects-translation) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3244
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 5.2892

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 0.99  | 78   | 0.4098          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2132  |
| No log        | 1.99  | 157  | 0.3022          | 0.0    | 0.0    | 0.0    | 0.0       | 5.248   |
| No log        | 2.99  | 236  | 0.2753          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2655  |
| No log        | 3.99  | 315  | 0.2742          | 0.0    | 0.0    | 0.0    | 0.0       | 5.275   |
| No log        | 5.0   | 394  | 0.2730          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2845  |
| No log        | 6.0   | 473  | 0.2821          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2805  |
| 0.4176        | 7.0   | 552  | 0.2923          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2868  |
| 0.4176        | 8.0   | 631  | 0.2977          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2892  |
| 0.4176        | 8.99  | 709  | 0.2937          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2964  |
| 0.4176        | 9.99  | 788  | 0.3020          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2916  |
| 0.4176        | 10.99 | 867  | 0.3177          | 0.0    | 0.0    | 0.0    | 0.0       | 5.294   |
| 0.4176        | 11.99 | 946  | 0.3186          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2916  |
| 0.0879        | 13.0  | 1025 | 0.3255          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2884  |
| 0.0879        | 14.0  | 1104 | 0.3241          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2868  |
| 0.0879        | 14.83 | 1170 | 0.3244          | 0.0    | 0.0    | 0.0    | 0.0       | 5.2892  |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2