Snearec commited on
Commit
e57bc78
·
1 Parent(s): 65089ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -83
README.md CHANGED
@@ -1,87 +1,21 @@
1
  ---
2
- license: afl-3.0
3
- ---
4
- ---
 
 
 
 
 
 
 
 
 
 
5
  tags:
6
- - yolov5
7
- - yolo
8
- - vision
9
- - object-detection
10
- - pytorch
11
- library_name: yolov5
12
- library_version: 7.0.6
13
- inference: false
14
-
15
  datasets:
16
- - keremberke/license-plate-object-detection
17
-
18
- model-index:
19
- - name: keremberke/yolov5m-license-plate
20
- results:
21
- - task:
22
- type: object-detection
23
-
24
- dataset:
25
- type: keremberke/license-plate-object-detection
26
- name: keremberke/license-plate-object-detection
27
- split: validation
28
-
29
- metrics:
30
- - type: precision # since [email protected] is not available on hf.co/metrics
31
- value: 0.9882982754936463 # min: 0.0 - max: 1.0
32
33
  ---
34
-
35
- <div align="center">
36
- <img width="640" alt="keremberke/yolov5m-license-plate" src="https://huggingface.co/keremberke/yolov5m-license-plate/resolve/main/sample_visuals.jpg">
37
- </div>
38
-
39
-
40
- ```bash
41
- pip install -U yolov5
42
- ```
43
-
44
- - Load model and perform prediction:
45
-
46
- ```python
47
- import yolov5
48
-
49
- # load model
50
- model = yolov5.load('keremberke/yolov5m-license-plate')
51
-
52
- # set model parameters
53
- model.conf = 0.25 # NMS confidence threshold
54
- model.iou = 0.45 # NMS IoU threshold
55
- model.agnostic = False # NMS class-agnostic
56
- model.multi_label = False # NMS multiple labels per box
57
- model.max_det = 1000 # maximum number of detections per image
58
-
59
- # set image
60
- img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
61
-
62
- # perform inference
63
- results = model(img, size=640)
64
-
65
- # inference with test time augmentation
66
- results = model(img, augment=True)
67
-
68
- # parse results
69
- predictions = results.pred[0]
70
- boxes = predictions[:, :4] # x1, y1, x2, y2
71
- scores = predictions[:, 4]
72
- categories = predictions[:, 5]
73
-
74
- # show detection bounding boxes on image
75
- results.show()
76
-
77
- # save results into "results/" folder
78
- results.save(save_dir='results/')
79
- ```
80
-
81
- - Finetune the model on your custom dataset:
82
-
83
- ```bash
84
- yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5m-license-plate --epochs 10
85
- ```
86
-
87
- **More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)*
 
1
  ---
2
+ description: Ultralytics best model trained on dataset.yaml
3
+ author: Ultralytics
4
+ version: 8.0.116
5
+ stride: 32
6
+ task: detect
7
+ batch: 1
8
+ imgsz:
9
+ - 640
10
+ - 640
11
+ names:
12
+ 0: player
13
+ 1: football
14
+ license: gpl-3.0
15
  tags:
16
+ - object-detection
17
+ - computer-vision
18
+ - yolov8
 
 
 
 
 
 
19
  datasets:
20
+ - detection-datasets/coco
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ---