SmilePanda
commited on
Commit
•
bcc436f
1
Parent(s):
a8127db
Upload README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,73 @@ datasets:
|
|
5 |
- BelleGroup/train_2M_CN
|
6 |
language:
|
7 |
- zh
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- BelleGroup/train_2M_CN
|
6 |
language:
|
7 |
- zh
|
8 |
+
---
|
9 |
+
# Langboat_bloom-6b4-zh-instruct_finetune-chat
|
10 |
+
是基于Langboat_bloom-6b4-zh模型,在firefly-train-1.1M和Belle-train_2m_cn数据集上采用的QLoRA方法微调的对话模型。
|
11 |
+
在CEVAL上的评测结果:
|
12 |
+
|
13 |
+
| STEM | Social Sciences | Humanities | Others | Average | AVG(Hard) |
|
14 |
+
|------|-----------------|------------|--------|---------|-----------|
|
15 |
+
| 27.9 | 27.2 | 24.8 | 26.4 | 26.8 | 28.0 |
|
16 |
+
|
17 |
+
# 使用
|
18 |
+
## 单轮指令生成
|
19 |
+
```python
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
21 |
+
|
22 |
+
device = "cuda"
|
23 |
+
model = AutoModelForCausalLM.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", device_map=device)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", use_fast=False)
|
25 |
+
|
26 |
+
source_prefix = "human"
|
27 |
+
target_prefix = "assistant"
|
28 |
+
query = "你好"
|
29 |
+
sentence = f"{source_prefix}: \n{query}\n\n{target_prefix}: \n"
|
30 |
+
print("query: ", sentence)
|
31 |
+
input_ids = tokenizer(sentence, return_tensors='pt').input_ids.to(device)
|
32 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=500,
|
33 |
+
do_sample=True,
|
34 |
+
top_p=0.8,
|
35 |
+
temperature=0.35,
|
36 |
+
repetition_penalty=1.2,
|
37 |
+
eos_token_id=tokenizer.eos_token_id)
|
38 |
+
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
39 |
+
response = rets.replace(sentence, "")
|
40 |
+
print(response)
|
41 |
+
```
|
42 |
+
|
43 |
+
## 多轮对话
|
44 |
+
```python
|
45 |
+
import os
|
46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
47 |
+
|
48 |
+
device = "cuda"
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", device_map=device)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", use_fast=False)
|
51 |
+
|
52 |
+
source_prefix = "human"
|
53 |
+
target_prefix = "assistant"
|
54 |
+
|
55 |
+
history = ""
|
56 |
+
|
57 |
+
while True:
|
58 |
+
query = input("user: ").strip()
|
59 |
+
if not query:
|
60 |
+
continue
|
61 |
+
if query == 'q' or query == 'stop':
|
62 |
+
break
|
63 |
+
if history:
|
64 |
+
sentence = history + f"\n{source_prefix}: \n{query}\n\n{target_prefix}: \n"
|
65 |
+
else:
|
66 |
+
sentence = f"{source_prefix}: \n{query}\n\n{target_prefix}: \n"
|
67 |
+
input_ids = tokenizer(sentence, return_tensors='pt').input_ids.to(device)
|
68 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=1024,
|
69 |
+
do_sample=True,
|
70 |
+
top_p=0.90,
|
71 |
+
temperature=0.1,
|
72 |
+
repetition_penalty=1.0,
|
73 |
+
eos_token_id=tokenizer.eos_token_id)
|
74 |
+
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
75 |
+
print("bloom: {}".format(rets.replace(sentence, "")))
|
76 |
+
history = rets
|
77 |
+
```
|