JingzeShi commited on
Commit
9f2de09
·
verified ·
1 Parent(s): 63a8e45

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -88
README.md CHANGED
@@ -6,98 +6,24 @@ datasets:
6
  language:
7
  - en
8
  pipeline_tag: text-generation
9
- tags:
10
- - pt
11
- - doge
12
  ---
13
 
 
14
 
15
- # **Doge 320M**
16
 
17
- <div align="center">
18
- <img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
19
- </div>
20
- <hr>
21
- <div align="center">
22
- <a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
23
- <img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
24
- </a>
25
- <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
26
- <img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
27
- </a>
28
- <a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
29
- <img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
30
- </a>
31
- <a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
32
- <img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
33
- </a>
34
- </div>
35
 
36
- Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository.
37
 
 
 
 
 
38
 
39
- ## Uses
40
-
41
- ```python
42
- >>> from transformers import AutoTokenizer, AutoModelForCausalLM
43
-
44
- >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M")
45
- >>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-320M", trust_remote_code=True)
46
- >>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
47
-
48
- >>> out = model.generate(**inputs, max_new_tokens=100)
49
- >>> print(tokenizer.batch_decode(out))
50
- ```
51
-
52
-
53
- ## Model Details
54
-
55
- We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-160M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-160M-Instruct).
56
-
57
-
58
- **Pre-Training**:
59
-
60
- | Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
61
- |---|---|---|---|---|---|---|---|---|
62
- | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
63
- | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
64
- | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
65
- | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
66
-
67
- **Evaluation**:
68
-
69
- | Model | MMLU | TriviaQA | ARC | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on i7-11 CPU |
70
- |---|---|---|---|---|---|---|---|---|
71
- | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
72
- | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
73
- | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 66.3 | 38.7 | 34.4 | 52.2 | 28 |
74
- | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 33.8 | 9.4 | 52.1 | 69.9 | 46.5 | 37.9 | 55.0 | 16 |
75
-
76
- > [!NOTE]
77
- > All evaluations are done using five-shot settings, without additional training on the benchmarks.
78
-
79
- **Procedure**:
80
-
81
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/y18ty3sh)
82
-
83
-
84
- **Environment**:
85
-
86
- - Image: nvcr.io/nvidia/pytorch:24.12-py3
87
- - Hardware: 1x NVIDIA RTX 4090
88
- - Software: Transformers
89
-
90
-
91
- ## Citation
92
-
93
- ```bibtex
94
- @misc{shi2024wonderfulmatrices,
95
- title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture},
96
- author={Jingze Shi and Bingheng Wu},
97
- year={2024},
98
- eprint={2412.11834},
99
- archivePrefix={arXiv},
100
- primaryClass={cs.LG},
101
- url={https://arxiv.org/abs/2412.11834},
102
- }
103
- ```
 
6
  language:
7
  - en
8
  pipeline_tag: text-generation
 
 
 
9
  ---
10
 
11
+ # **Doge 320M checkpoint**
12
 
13
+ ![wsd_scheduler](./wsd_scheduler.png)
14
 
15
+ Doge uses `wsd_scheduler` as the training scheduler, which divides the learning rate into three stages: `warmup`, `stable`, and `decay`. It allows us to continue training on any new dataset from any checkpoint in the `stable stage` without spikes of the training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ Here are the initial learning rates required to continue training at each checkpoint:
18
 
19
+ - **[Doge-20M](https://huggingface.co/SmallDoge/Doge-20M-checkpoint)**: 8e-3
20
+ - **[Doge-60M](https://huggingface.co/SmallDoge/Doge-60M-checkpoint)**: 6e-3
21
+ - **[Doge-160M](https://huggingface.co/SmallDoge/Doge-160M-checkpoint)**: 4e-3
22
+ - **[Doge-320M](https://huggingface.co/SmallDoge/Doge-320M-checkpoint)**: 2e-3
23
 
24
+ | Model | Learning Rate | Schedule | Warmup Steps | Stable Steps |
25
+ |-------|---------------|----------|--------------|--------------|
26
+ | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M-checkpoint) | 8e-3 | wsd_scheduler | 800 | 6400 |
27
+ | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M-checkpoint) | 6e-3 | wsd_scheduler | 1600 | 12800 |
28
+ | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M-checkpoint) | 4e-3 | wsd_scheduler | 2400 | 19200 |
29
+ | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M-checkpoint) | 2e-3 | wsd_scheduler | 3200 | 25600 |