File size: 4,794 Bytes
12b276d c5be912 12b276d c5be912 12b276d 503994c 1ccf95f 503994c 1ccf95f 503994c 1ccf95f 12b276d c5be912 12b276d 4abfd82 c5be912 12b276d c5be912 12b276d c5be912 12b276d 5f7d5d3 4abfd82 c57dd1a 4abfd82 12b276d c5be912 12b276d 5f7d5d3 736d6f3 c5be912 4abfd82 12b276d c5be912 736d6f3 0688582 4abfd82 73c5dce 736d6f3 3987220 5f7d5d3 c5be912 736d6f3 c5be912 12b276d c5be912 12b276d c5be912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
library_name: transformers
license: apache-2.0
datasets:
- HuggingFaceTB/smollm-corpus
language:
- en
pipeline_tag: text-generation
---
# **Doge 20M**
<div align="center">
<img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
</div>
<hr>
<div align="center">
<a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/SmallDoge" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-SmallDoge-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository.
## Uses
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M")
>>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M", trust_remote_code=True)
>>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
>>> out = model.generate(**inputs, max_new_tokens=100)
>>> print(tokenizer.batch_decode(out))
```
## Model Details
We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus).
> NOTE: If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-20M-checkpoint).
> NOTE: These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-20M-Instruct).
> TODO: The larger model is under training and will be uploaded soon.
**Pre-Training**:
| Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision |
|---|---|---|---|---|---|---|---|
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 |
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 |
**Evaluation**:
| Model | MMLU | TriviaQA | ARC-E | ARC-C | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on CPU |
|---|---|---|---|---|---|---|---|---|---|
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.43 | 0.03 | 36.83 | 22.78 | 58.38 | 27.25 | 25.60 | 50.20 | 142 |
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.41 | 0.18 | 50.46 | 25.34 | 61.43 | 31.45 | 28.00 | 50.75 | 62 |
> All evaluations are done using five-shot settings, without additional training on the benchmarks.
**Procedure**:
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/p8x93v5l)
**Environment**:
- Image: nvcr.io/nvidia/pytorch:24.12-py3
- Hardware: 1x NVIDIA RTX 4090
- Software: Transformers
## Citation
```bibtex
@misc{shi2024wonderfulmatrices,
title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture},
author={Jingze Shi and Bingheng Wu},
year={2024},
eprint={2412.11834},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2412.11834},
}
``` |