File size: 3,277 Bytes
1c1b04d f26ddf2 1c1b04d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: l3cube-pune/hing-mbert
model-index:
- name: hing-mbert-ours-run-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hing-mbert-ours-run-3
This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9769
- Accuracy: 0.675
- Precision: 0.6433
- Recall: 0.6344
- F1: 0.6344
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.9089 | 1.0 | 100 | 1.0993 | 0.635 | 0.6487 | 0.5304 | 0.5060 |
| 0.6657 | 2.0 | 200 | 0.8138 | 0.645 | 0.6550 | 0.6482 | 0.6234 |
| 0.3858 | 3.0 | 300 | 1.1334 | 0.665 | 0.6162 | 0.6061 | 0.5995 |
| 0.208 | 4.0 | 400 | 1.9041 | 0.685 | 0.6488 | 0.6169 | 0.6087 |
| 0.0996 | 5.0 | 500 | 2.3735 | 0.645 | 0.5867 | 0.5781 | 0.5794 |
| 0.0296 | 6.0 | 600 | 2.5772 | 0.665 | 0.6284 | 0.6208 | 0.6198 |
| 0.0623 | 7.0 | 700 | 2.8906 | 0.655 | 0.6040 | 0.5916 | 0.5926 |
| 0.0395 | 8.0 | 800 | 2.6567 | 0.675 | 0.6279 | 0.6254 | 0.6219 |
| 0.029 | 9.0 | 900 | 2.9277 | 0.655 | 0.6208 | 0.5950 | 0.5991 |
| 0.0194 | 10.0 | 1000 | 2.7362 | 0.665 | 0.6241 | 0.6208 | 0.6190 |
| 0.0092 | 11.0 | 1100 | 2.5561 | 0.68 | 0.6396 | 0.6401 | 0.6385 |
| 0.0059 | 12.0 | 1200 | 3.1112 | 0.675 | 0.6350 | 0.5967 | 0.6042 |
| 0.0133 | 13.0 | 1300 | 2.5269 | 0.685 | 0.6520 | 0.6607 | 0.6519 |
| 0.0051 | 14.0 | 1400 | 2.8736 | 0.68 | 0.6381 | 0.6158 | 0.6134 |
| 0.0044 | 15.0 | 1500 | 2.9132 | 0.675 | 0.6336 | 0.6180 | 0.6200 |
| 0.0029 | 16.0 | 1600 | 2.8701 | 0.675 | 0.6337 | 0.6214 | 0.6233 |
| 0.0015 | 17.0 | 1700 | 2.8115 | 0.69 | 0.6475 | 0.6388 | 0.6420 |
| 0.0019 | 18.0 | 1800 | 2.9517 | 0.67 | 0.6373 | 0.6276 | 0.6273 |
| 0.0013 | 19.0 | 1900 | 2.9633 | 0.67 | 0.6373 | 0.6276 | 0.6273 |
| 0.0007 | 20.0 | 2000 | 2.9769 | 0.675 | 0.6433 | 0.6344 | 0.6344 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Tokenizers 0.13.2
|