SkyR commited on
Commit
35b9498
·
1 Parent(s): 0d5db42

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: albert-base-ours-run-1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # albert-base-ours-run-1
19
+
20
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.3970
23
+ - Accuracy: 0.735
24
+ - Precision: 0.7033
25
+ - Recall: 0.6790
26
+ - F1: 0.6873
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.9719 | 1.0 | 200 | 0.8460 | 0.635 | 0.6534 | 0.5920 | 0.5547 |
58
+ | 0.7793 | 2.0 | 400 | 0.7762 | 0.675 | 0.6965 | 0.6323 | 0.5936 |
59
+ | 0.5734 | 3.0 | 600 | 0.8149 | 0.67 | 0.6200 | 0.6192 | 0.6196 |
60
+ | 0.3877 | 4.0 | 800 | 0.9555 | 0.7 | 0.6724 | 0.6482 | 0.6549 |
61
+ | 0.2426 | 5.0 | 1000 | 1.1248 | 0.695 | 0.6529 | 0.6437 | 0.6452 |
62
+ | 0.183 | 6.0 | 1200 | 1.3497 | 0.705 | 0.6717 | 0.6489 | 0.6563 |
63
+ | 0.1011 | 7.0 | 1400 | 1.6369 | 0.7 | 0.6620 | 0.6532 | 0.6560 |
64
+ | 0.0602 | 8.0 | 1600 | 1.8171 | 0.7 | 0.6763 | 0.6615 | 0.6654 |
65
+ | 0.0335 | 9.0 | 1800 | 1.9601 | 0.695 | 0.6640 | 0.6490 | 0.6545 |
66
+ | 0.0158 | 10.0 | 2000 | 2.0206 | 0.71 | 0.6802 | 0.6751 | 0.6768 |
67
+ | 0.0148 | 11.0 | 2200 | 2.0881 | 0.675 | 0.6252 | 0.6242 | 0.6232 |
68
+ | 0.0057 | 12.0 | 2400 | 2.2708 | 0.735 | 0.7146 | 0.6790 | 0.6904 |
69
+ | 0.0079 | 13.0 | 2600 | 2.2348 | 0.72 | 0.6917 | 0.6659 | 0.6746 |
70
+ | 0.0018 | 14.0 | 2800 | 2.2978 | 0.725 | 0.6968 | 0.6662 | 0.6761 |
71
+ | 0.0025 | 15.0 | 3000 | 2.3180 | 0.735 | 0.7067 | 0.6790 | 0.6883 |
72
+ | 0.0028 | 16.0 | 3200 | 2.3910 | 0.74 | 0.7153 | 0.6854 | 0.6953 |
73
+ | 0.0002 | 17.0 | 3400 | 2.3830 | 0.735 | 0.7033 | 0.6790 | 0.6873 |
74
+ | 0.0002 | 18.0 | 3600 | 2.3899 | 0.735 | 0.7033 | 0.6790 | 0.6873 |
75
+ | 0.0001 | 19.0 | 3800 | 2.3922 | 0.735 | 0.7033 | 0.6790 | 0.6873 |
76
+ | 0.0001 | 20.0 | 4000 | 2.3970 | 0.735 | 0.7033 | 0.6790 | 0.6873 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.25.1
82
+ - Pytorch 1.13.0+cu116
83
+ - Tokenizers 0.13.2