pharaouk commited on
Commit
503dc31
·
1 Parent(s): c100b91

Upload 15 files

Browse files
code/amlignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
code/phi_predict.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ def predict(data, task, model, tokenizer, config, **kwargs):
4
+ if isinstance(data, pd.DataFrame):
5
+ data = data[data.columns[0]].tolist()
6
+ is_df = True
7
+ results = []
8
+ addn_args = kwargs.get("addn_args", {})
9
+ for d in data:
10
+ inputs = tokenizer(d, return_tensors="pt", return_attention_mask=False)
11
+ outputs = model.generate(**inputs, **addn_args, max_length=50)
12
+ text = tokenizer.batch_decode(outputs)[0]
13
+ results.append(text)
14
+ if is_df:
15
+ return pd.DataFrame(results,columns =['output'])
16
+ return {"output": results}
data/config/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mojanjp/phi-2",
3
+ "activation_function": "gelu_new",
4
+ "architecture": {
5
+ "block_cls": "parallel",
6
+ "mlp": {
7
+ "mlp_cls": "fused_mlp"
8
+ }
9
+ },
10
+ "architectures": [
11
+ "MixFormerSequentialForCausalLM"
12
+ ],
13
+ "attn_pdrop": 0.0,
14
+ "auto_map": {
15
+ "AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
16
+ "AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
17
+ },
18
+ "embd_pdrop": 0.0,
19
+ "flash_rotary": false,
20
+ "fused_dense": false,
21
+ "initializer_range": 0.02,
22
+ "layer_norm_epsilon": 1e-05,
23
+ "model_type": "mixformer-sequential",
24
+ "n_embd": 2560,
25
+ "n_head": 32,
26
+ "n_head_kv": null,
27
+ "n_inner": null,
28
+ "n_layer": 32,
29
+ "n_positions": 2048,
30
+ "resid_pdrop": 0.0,
31
+ "rotary_dim": 32,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.34.0",
35
+ "vocab_size": 51200
36
+ }
data/config/configuration_mixformer_sequential.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+
4
+ import math
5
+ from typing import Optional
6
+
7
+ from transformers import PretrainedConfig
8
+
9
+
10
+ class MixFormerSequentialConfig(PretrainedConfig):
11
+ """MixFormer (sequential for DeepSpeed) configuration."""
12
+
13
+ model_type = "mixformer-sequential"
14
+
15
+ attribute_map = {
16
+ "max_position_embeddings": "n_positions",
17
+ "hidden_size": "n_embd",
18
+ "num_attention_heads": "n_head",
19
+ "num_hidden_layers": "n_layer",
20
+ }
21
+
22
+ def __init__(
23
+ self,
24
+ vocab_size: int = 50304,
25
+ n_positions: int = 2048,
26
+ n_embd: int = 1024,
27
+ n_layer: int = 20,
28
+ n_inner: Optional[int] = None,
29
+ n_head: int = 16,
30
+ n_head_kv: Optional[int] = None,
31
+ rotary_dim: Optional[int] = 32,
32
+ activation_function: Optional[str] = "gelu_new",
33
+ flash_rotary: bool = False,
34
+ fused_dense: bool = False,
35
+ attn_pdrop: float = 0.0,
36
+ embd_pdrop: float = 0.0,
37
+ resid_pdrop: float = 0.0,
38
+ layer_norm_epsilon: float = 1e-5,
39
+ initializer_range: float = 0.02,
40
+ tie_word_embeddings: bool = False,
41
+ pad_vocab_size_multiple: int = 64,
42
+ **kwargs
43
+ ) -> None:
44
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
45
+ self.n_positions = n_positions
46
+ self.n_embd = n_embd
47
+ self.n_layer = n_layer
48
+ self.n_inner = n_inner
49
+ self.n_head = n_head
50
+ self.n_head_kv = n_head_kv
51
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
52
+ self.activation_function = activation_function
53
+ self.flash_rotary = flash_rotary
54
+ self.fused_dense = fused_dense
55
+ self.attn_pdrop = attn_pdrop
56
+ self.embd_pdrop = embd_pdrop
57
+ self.resid_pdrop = resid_pdrop
58
+ self.layer_norm_epsilon = layer_norm_epsilon
59
+ self.initializer_range = initializer_range
60
+
61
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
data/model/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mojanjp/phi-2",
3
+ "activation_function": "gelu_new",
4
+ "architecture": {
5
+ "block_cls": "parallel",
6
+ "mlp": {
7
+ "mlp_cls": "fused_mlp"
8
+ }
9
+ },
10
+ "architectures": [
11
+ "MixFormerSequentialForCausalLM"
12
+ ],
13
+ "attn_pdrop": 0.0,
14
+ "auto_map": {
15
+ "AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
16
+ "AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
17
+ },
18
+ "embd_pdrop": 0.0,
19
+ "flash_rotary": false,
20
+ "fused_dense": false,
21
+ "initializer_range": 0.02,
22
+ "layer_norm_epsilon": 1e-05,
23
+ "model_type": "mixformer-sequential",
24
+ "n_embd": 2560,
25
+ "n_head": 32,
26
+ "n_head_kv": null,
27
+ "n_inner": null,
28
+ "n_layer": 32,
29
+ "n_positions": 2048,
30
+ "resid_pdrop": 0.0,
31
+ "rotary_dim": 32,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.34.0",
35
+ "vocab_size": 51200
36
+ }
data/model/configuration_mixformer_sequential.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+
4
+ import math
5
+ from typing import Optional
6
+
7
+ from transformers import PretrainedConfig
8
+
9
+
10
+ class MixFormerSequentialConfig(PretrainedConfig):
11
+ """MixFormer (sequential for DeepSpeed) configuration."""
12
+
13
+ model_type = "mixformer-sequential"
14
+
15
+ attribute_map = {
16
+ "max_position_embeddings": "n_positions",
17
+ "hidden_size": "n_embd",
18
+ "num_attention_heads": "n_head",
19
+ "num_hidden_layers": "n_layer",
20
+ }
21
+
22
+ def __init__(
23
+ self,
24
+ vocab_size: int = 50304,
25
+ n_positions: int = 2048,
26
+ n_embd: int = 1024,
27
+ n_layer: int = 20,
28
+ n_inner: Optional[int] = None,
29
+ n_head: int = 16,
30
+ n_head_kv: Optional[int] = None,
31
+ rotary_dim: Optional[int] = 32,
32
+ activation_function: Optional[str] = "gelu_new",
33
+ flash_rotary: bool = False,
34
+ fused_dense: bool = False,
35
+ attn_pdrop: float = 0.0,
36
+ embd_pdrop: float = 0.0,
37
+ resid_pdrop: float = 0.0,
38
+ layer_norm_epsilon: float = 1e-5,
39
+ initializer_range: float = 0.02,
40
+ tie_word_embeddings: bool = False,
41
+ pad_vocab_size_multiple: int = 64,
42
+ **kwargs
43
+ ) -> None:
44
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
45
+ self.n_positions = n_positions
46
+ self.n_embd = n_embd
47
+ self.n_layer = n_layer
48
+ self.n_inner = n_inner
49
+ self.n_head = n_head
50
+ self.n_head_kv = n_head_kv
51
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
52
+ self.activation_function = activation_function
53
+ self.flash_rotary = flash_rotary
54
+ self.fused_dense = fused_dense
55
+ self.attn_pdrop = attn_pdrop
56
+ self.embd_pdrop = embd_pdrop
57
+ self.resid_pdrop = resid_pdrop
58
+ self.layer_norm_epsilon = layer_norm_epsilon
59
+ self.initializer_range = initializer_range
60
+
61
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
data/model/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.34.0"
4
+ }
data/model/model_mixformer_sequential.py ADDED
@@ -0,0 +1,855 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+ #
4
+ # BSD 3-Clause License
5
+ #
6
+ # Copyright (c) 2022, Tri Dao, [email protected].
7
+ # All rights reserved.
8
+ #
9
+ # Redistribution and use in source and binary forms, with or without
10
+ # modification, are permitted provided that the following conditions are met:
11
+ #
12
+ # * Redistributions of source code must retain the above copyright notice, this
13
+ # list of conditions and the following disclaimer.
14
+ #
15
+ # * Redistributions in binary form must reproduce the above copyright notice,
16
+ # this list of conditions and the following disclaimer in the documentation
17
+ # and/or other materials provided with the distribution.
18
+ #
19
+ # * Neither the name of the copyright holder nor the names of its
20
+ # contributors may be used to endorse or promote products derived from
21
+ # this software without specific prior written permission.
22
+ #
23
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26
+ # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
27
+ # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28
+ # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29
+ # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31
+ # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
+
34
+ from __future__ import annotations
35
+
36
+ import math
37
+ from typing import Any, Dict, Optional, Tuple, Union
38
+ from dataclasses import dataclass, field
39
+
40
+ import torch
41
+ import torch.nn as nn
42
+
43
+ from einops import rearrange, repeat
44
+ from transformers.activations import ACT2FN
45
+ from transformers import PretrainedConfig, PreTrainedModel
46
+ from transformers.modeling_outputs import CausalLMOutputWithPast
47
+
48
+ from .configuration_mixformer_sequential import MixFormerSequentialConfig
49
+
50
+
51
+ try:
52
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
53
+ from flash_attn.ops.fused_dense import FusedDense
54
+ except:
55
+ FlashRotaryEmbedding = None
56
+ FusedDense = None
57
+
58
+
59
+ @dataclass
60
+ class InferenceParams:
61
+ """Inference parameters passed to model to efficiently calculate
62
+ and store context during inference.
63
+
64
+ Reference:
65
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
66
+
67
+ Args:
68
+ max_seqlen: Maximum sequence length.
69
+ max_batch_size: Maximum batch size.
70
+ seqlen_offset: Sequence length offset.
71
+ batch_size_offset: Batch size offset.
72
+ key_value_memory_dict: Key value memory dictionary.
73
+ lengths_per_sample: Lengths per sample.
74
+
75
+ """
76
+
77
+ max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
78
+
79
+ max_batch_size: int = field(metadata={"help": "Maximum batch size."})
80
+
81
+ seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
82
+
83
+ batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
84
+
85
+ key_value_memory_dict: Dict[str, Any] = field(
86
+ default_factory=dict, metadata={"help": "Key value memory dictionary."}
87
+ )
88
+
89
+ lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
90
+
91
+
92
+ class Embedding(nn.Module):
93
+ """Token embedding with dropout."""
94
+
95
+ def __init__(self, config: PretrainedConfig) -> None:
96
+ super().__init__()
97
+
98
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
99
+ self.drop = nn.Dropout(config.embd_pdrop)
100
+
101
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
102
+ input_shape = input_ids.size()
103
+ input_ids = input_ids.view(-1, input_shape[-1])
104
+
105
+ hidden_states = self.wte(input_ids)
106
+ hidden_states = self.drop(hidden_states)
107
+
108
+ return hidden_states
109
+
110
+
111
+ def _apply_rotary_emb(
112
+ x: torch.FloatTensor,
113
+ cos: torch.FloatTensor,
114
+ sin: torch.FloatTensor,
115
+ ) -> torch.FloatTensor:
116
+ _, seqlen, _, head_dim = x.shape
117
+ rotary_seqlen, rotary_dim = cos.shape
118
+ rotary_dim *= 2
119
+
120
+ assert rotary_dim <= head_dim
121
+ assert seqlen <= rotary_seqlen
122
+ assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
123
+
124
+ x_rot = x[:, :, :, :rotary_dim]
125
+ x_pass = x[:, :, :, rotary_dim:]
126
+
127
+ x1, x2 = x_rot.chunk(2, dim=-1)
128
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
129
+ x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
130
+
131
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
132
+
133
+ return torch.cat([x_rot, x_pass], axis=-1)
134
+
135
+
136
+ def _apply_rotary_emb_kv(
137
+ kv: torch.FloatTensor,
138
+ cos: torch.FloatTensor,
139
+ sin: torch.FloatTensor,
140
+ cos_k: Optional[torch.FloatTensor] = None,
141
+ sin_k: Optional[torch.FloatTensor] = None,
142
+ ) -> torch.FloatTensor:
143
+ _, seqlen, two, _, head_dim = kv.shape
144
+ assert two == 2
145
+
146
+ rotary_seqlen, rotary_dim = cos.shape
147
+ rotary_dim *= 2
148
+ assert rotary_dim <= head_dim
149
+ assert seqlen <= rotary_seqlen
150
+ assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
151
+
152
+ k_rot = kv[:, :, 0, :, :rotary_dim]
153
+ k_pass = kv[:, :, 0, :, rotary_dim:]
154
+
155
+ k1, k2 = k_rot.chunk(2, dim=-1)
156
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
157
+ k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
158
+
159
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
160
+
161
+ return torch.cat(
162
+ [
163
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
164
+ kv[:, :, 1:2, :, :],
165
+ ],
166
+ axis=2,
167
+ )
168
+
169
+
170
+ def _apply_rotary_emb_qkv(
171
+ qkv: torch.FloatTensor,
172
+ cos: torch.FloatTensor,
173
+ sin: torch.FloatTensor,
174
+ cos_k: Optional[torch.FloatTensor] = None,
175
+ sin_k: Optional[torch.FloatTensor] = None,
176
+ ) -> torch.FloatTensor:
177
+ _, seqlen, three, _, head_dim = qkv.shape
178
+ assert three == 3
179
+
180
+ rotary_seqlen, rotary_dim = cos.shape
181
+ rotary_dim *= 2
182
+ assert rotary_dim <= head_dim
183
+ assert seqlen <= rotary_seqlen
184
+ assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
185
+
186
+ q_rot = qkv[:, :, 0, :, :rotary_dim]
187
+ q_pass = qkv[:, :, 0, :, rotary_dim:]
188
+
189
+ k_rot = qkv[:, :, 1, :, :rotary_dim]
190
+ k_pass = qkv[:, :, 1, :, rotary_dim:]
191
+
192
+ q1, q2 = q_rot.chunk(2, dim=-1)
193
+ k1, k2 = k_rot.chunk(2, dim=-1)
194
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
195
+ q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
196
+
197
+ q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
198
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
199
+
200
+ return torch.cat(
201
+ [
202
+ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
203
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
204
+ qkv[:, :, 2:3, :, :],
205
+ ],
206
+ axis=2,
207
+ )
208
+
209
+
210
+ class RotaryEmbedding(nn.Module):
211
+ """Rotary positional embedding (RoPE).
212
+
213
+ Reference:
214
+ RoFormer: Enhanced Transformer with Rotary Position Embedding.
215
+ https://arxiv.org/pdf/2104.09864.pdf.
216
+
217
+ """
218
+
219
+ def __init__(
220
+ self,
221
+ dim: int,
222
+ base: int = 10000,
223
+ scale_base: Optional[float] = None,
224
+ pos_idx_in_fp32: bool = True,
225
+ device: Optional[str] = None,
226
+ **kwargs,
227
+ ) -> None:
228
+ super().__init__()
229
+
230
+ if scale_base is not None:
231
+ raise NotImplementedError
232
+
233
+ self.dim = dim
234
+ self.base = float(base)
235
+ self.scale_base = scale_base
236
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
237
+ self.device = device
238
+
239
+ # Generate and save the inverse frequency buffer (non-trainable)
240
+ inv_freq = self._compute_inv_freq(device)
241
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
242
+
243
+ # Generate and save the scale buffer (non-trainable)
244
+ scale = (
245
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
246
+ if scale_base is not None
247
+ else None
248
+ )
249
+ self.register_buffer("scale", scale, persistent=False)
250
+
251
+ self._seq_len_cached = 0
252
+ self._cos_cached = None
253
+ self._sin_cached = None
254
+ self._cos_k_cached = None
255
+ self._sin_k_cached = None
256
+
257
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
258
+ return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
259
+
260
+ def _update_cos_sin_cache(
261
+ self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None
262
+ ) -> None:
263
+ # Reset the tables if sequence length has been chaned, if we are on a
264
+ # new device or if we are switching from inference mode to training
265
+ if (
266
+ seqlen > self._seq_len_cached
267
+ or self._cos_cached is None
268
+ or self._cos_cached.device != device
269
+ or self._cos_cached.dtype != dtype
270
+ or (self.training and self._cos_cached.is_inference())
271
+ ):
272
+ self._seq_len_cached = seqlen
273
+
274
+ # fp32 is preferred since the output of `torch.arange` can be quite large
275
+ # and bf16 would lose a lot of precision
276
+ if self.pos_idx_in_fp32:
277
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
278
+ if self.inv_freq.dtype != torch.float32:
279
+ inv_freq = self._compute_inv_freq(device=device)
280
+ else:
281
+ inv_freq = self.inv_freq
282
+ else:
283
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
284
+ inv_freq = self.inv_freq
285
+
286
+ # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
287
+ freqs = torch.outer(t, inv_freq)
288
+ if self.scale is None:
289
+ self._cos_cached = torch.cos(freqs).to(dtype)
290
+ self._sin_cached = torch.sin(freqs).to(dtype)
291
+ else:
292
+ power = (
293
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
294
+ ) / self.scale_base
295
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
296
+
297
+ # Force the scale multiplication to happen in fp32
298
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
299
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
300
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
301
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
302
+
303
+ def forward(
304
+ self,
305
+ qkv: torch.Tensor,
306
+ kv: Optional[torch.Tensor] = None,
307
+ seqlen_offset: int = 0,
308
+ max_seqlen: Optional[int] = None,
309
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
310
+ seqlen = qkv.shape[1]
311
+
312
+ if max_seqlen is not None:
313
+ self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
314
+ else:
315
+ self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
316
+
317
+ if kv is None:
318
+ return _apply_rotary_emb_qkv(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
319
+ else:
320
+ q = _apply_rotary_emb(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
321
+ kv = _apply_rotary_emb_kv(kv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
322
+
323
+ return q, kv
324
+
325
+
326
+ class MLP(nn.Module):
327
+ """Multi-Layer Perceptron.
328
+
329
+ Reference:
330
+ Attention Is All You Need.
331
+ https://arxiv.org/pdf/1706.03762.pdf.
332
+
333
+ """
334
+
335
+ def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
336
+ super().__init__()
337
+
338
+ act_fn = config.activation_function if act_fn is None else act_fn
339
+ assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
340
+
341
+ n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
342
+ n_inner = n_inner if n_inner is not None else 4 * config.n_embd
343
+
344
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
345
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
346
+ self.act = ACT2FN[act_fn]
347
+
348
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
349
+ hidden_states = self.fc1(hidden_states)
350
+ hidden_states = self.act(hidden_states)
351
+ hidden_states = self.fc2(hidden_states)
352
+
353
+ return hidden_states
354
+
355
+
356
+ class SelfAttention(nn.Module):
357
+ """Self-attention layer (compatible with PyTorch).
358
+
359
+ Reference:
360
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
361
+
362
+ """
363
+
364
+ def __init__(
365
+ self,
366
+ causal: bool = True,
367
+ softmax_scale: Optional[float] = None,
368
+ attention_dropout: float = 0.0,
369
+ ) -> None:
370
+ super().__init__()
371
+
372
+ self.causal = causal
373
+ self.softmax_scale = softmax_scale
374
+ self.drop = nn.Dropout(attention_dropout)
375
+
376
+ def forward(
377
+ self,
378
+ qkv: torch.FloatTensor,
379
+ causal: bool = None,
380
+ attention_mask: Optional[torch.BoolTensor] = None,
381
+ **kwargs,
382
+ ) -> torch.FloatTensor:
383
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
384
+ q, k, v = qkv.unbind(dim=2)
385
+
386
+ causal = self.causal if causal is None else causal
387
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
388
+
389
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
390
+
391
+ if attention_mask is not None:
392
+ padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
393
+ padding_mask.masked_fill_(attention_mask, 0.0)
394
+
395
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
396
+
397
+ if causal:
398
+ causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
399
+ scores = scores + causal_mask.to(dtype=scores.dtype)
400
+
401
+ attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
402
+ attention = self.drop(attention)
403
+
404
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
405
+
406
+ return output
407
+
408
+
409
+ class CrossAttention(nn.Module):
410
+ """Cross-attention layer (compatible with PyTorch).
411
+
412
+ Reference:
413
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
414
+
415
+ """
416
+
417
+ def __init__(
418
+ self,
419
+ causal: bool = True,
420
+ softmax_scale: Optional[float] = None,
421
+ attention_dropout: float = 0.0,
422
+ ) -> None:
423
+ super().__init__()
424
+
425
+ self.causal = causal
426
+ self.softmax_scale = softmax_scale
427
+ self.drop = nn.Dropout(attention_dropout)
428
+
429
+ def forward(
430
+ self,
431
+ q: torch.FloatTensor,
432
+ kv: torch.FloatTensor,
433
+ causal: bool = None,
434
+ attention_mask: Optional[torch.BoolTensor] = None,
435
+ **kwargs,
436
+ ) -> torch.FloatTensor:
437
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
438
+ seqlen_k = kv.shape[1]
439
+ assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
440
+
441
+ if kv.shape[3] != q.shape[2]:
442
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
443
+ k, v = kv.unbind(dim=2)
444
+
445
+ causal = self.causal if causal is None else causal
446
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
447
+
448
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
449
+
450
+ if attention_mask is not None:
451
+ padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device)
452
+ padding_mask.masked_fill_(attention_mask, 0.0)
453
+
454
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
455
+
456
+ if causal:
457
+ rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
458
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
459
+ causal_mask = cols > rows + seqlen_k - seqlen_q
460
+
461
+ scores = scores.masked_fill(causal_mask, -10000.0)
462
+
463
+ attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
464
+ attention = self.drop(attention)
465
+
466
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
467
+
468
+ return output
469
+
470
+
471
+ def _find_mha_dims(
472
+ config: PretrainedConfig,
473
+ n_head: Optional[int] = None,
474
+ n_head_kv: Optional[int] = None,
475
+ head_dim: Optional[int] = None,
476
+ ) -> Tuple[int, int]:
477
+ assert all(
478
+ hasattr(config, attr) for attr in ["n_embd", "n_head"]
479
+ ), "`config` must have `n_embd` and `n_head` attributes."
480
+
481
+ if head_dim is None:
482
+ assert (
483
+ config.n_embd % config.n_head == 0
484
+ ), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
485
+
486
+ if n_head is None and head_dim is None:
487
+ head_dim = config.n_embd // config.n_head
488
+ n_head = config.n_head
489
+ elif n_head is None or head_dim is None:
490
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
491
+
492
+ if n_head_kv is None:
493
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
494
+ assert n_head % n_head_kv == 0, "`n_head` must be divisible by `n_head_kv`."
495
+
496
+ return n_head, n_head_kv, head_dim
497
+
498
+
499
+ def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
500
+ num_heads, head_dim = kv.shape[-2:]
501
+
502
+ if layer_idx not in inference_params.key_value_memory_dict:
503
+ kv_cache = torch.empty(
504
+ inference_params.max_batch_size,
505
+ inference_params.max_seqlen,
506
+ 2,
507
+ num_heads,
508
+ head_dim,
509
+ dtype=kv.dtype,
510
+ device=kv.device,
511
+ )
512
+ inference_params.key_value_memory_dict[layer_idx] = kv_cache
513
+ else:
514
+ kv_cache = inference_params.key_value_memory_dict[layer_idx]
515
+
516
+ batch_start = inference_params.batch_size_offset
517
+ batch_end = batch_start + kv.shape[0]
518
+ assert batch_end <= kv_cache.shape[0]
519
+
520
+ sequence_start = inference_params.seqlen_offset
521
+ sequence_end = sequence_start + kv.shape[1]
522
+ assert sequence_end <= kv_cache.shape[1]
523
+
524
+ assert kv_cache is not None
525
+ kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
526
+ kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
527
+
528
+ return kv
529
+
530
+
531
+ class MHA(nn.Module):
532
+ """Multi-head attention layer."""
533
+
534
+ def __init__(
535
+ self,
536
+ config: PretrainedConfig,
537
+ dtype: Optional[torch.dtype] = None,
538
+ device: Optional[str] = None,
539
+ rotary_dim: Optional[int] = None,
540
+ rotary_emb_scale_base: Optional[float] = None,
541
+ n_head: Optional[int] = None,
542
+ n_head_kv: Optional[int] = None,
543
+ head_dim: Optional[int] = None,
544
+ bias: bool = True,
545
+ causal: bool = True,
546
+ softmax_scale: Optional[float] = None,
547
+ layer_idx: Optional[int] = None,
548
+ return_residual: bool = False,
549
+ checkpointing: bool = False,
550
+ ) -> None:
551
+ super().__init__()
552
+
553
+ # Rotary embedding
554
+ self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
555
+ if self.rotary_emb_dim > 0:
556
+ rotary_kwargs = {"device": device}
557
+ if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
558
+ rotary_kwargs["scale_base"] = rotary_emb_scale_base
559
+
560
+ rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
561
+ if rotary_cls is None:
562
+ rotary_cls = RotaryEmbedding
563
+ self.rotary_emb = rotary_cls(self.rotary_emb_dim, **rotary_kwargs)
564
+
565
+ # MLP
566
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim)
567
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
568
+ hidden_size = config.n_embd
569
+
570
+ linear_cls = FusedDense if config.fused_dense else nn.Linear
571
+ if linear_cls is None:
572
+ linear_cls = nn.Linear
573
+
574
+ self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
575
+ self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
576
+
577
+ # Attention
578
+ self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop)
579
+ self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop)
580
+
581
+ self.layer_idx = layer_idx
582
+ self.return_residual = return_residual
583
+ self.checkpointing = checkpointing
584
+
585
+ def _forward_self_attn(
586
+ self, x: torch.FloatTensor, attention_mask: Optional[torch.BoolTensor]
587
+ ) -> torch.FloatTensor:
588
+ qkv = self.Wqkv(x)
589
+ qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
590
+
591
+ if self.rotary_emb_dim > 0:
592
+ qkv = self.rotary_emb(qkv)
593
+
594
+ if self.checkpointing:
595
+ return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, attention_mask=attention_mask)
596
+
597
+ return self.inner_attn(qkv, attention_mask=attention_mask)
598
+
599
+ def _forward_cross_attn(
600
+ self,
601
+ x: torch.FloatTensor,
602
+ past_key_values: Optional[InferenceParams],
603
+ attention_mask: Optional[torch.BoolTensor],
604
+ ) -> torch.FloatTensor:
605
+ qkv = self.Wqkv(x)
606
+
607
+ q = qkv[..., : self.n_head * self.head_dim]
608
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
609
+
610
+ kv = qkv[..., self.n_head * self.head_dim :]
611
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
612
+
613
+ seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
614
+ causal = None if seqlen_offset == 0 else False
615
+ if self.rotary_emb_dim > 0:
616
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
617
+
618
+ if past_key_values is not None:
619
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
620
+
621
+ if self.checkpointing:
622
+ return torch.utils.checkpoint.checkpoint(
623
+ self.inner_cross_attn, q, kv, attention_mask=attention_mask, causal=causal
624
+ )
625
+
626
+ return self.inner_cross_attn(q, kv, attention_mask=attention_mask, causal=causal)
627
+
628
+ def forward(
629
+ self,
630
+ x: torch.FloatTensor,
631
+ past_key_values: Optional[InferenceParams] = None,
632
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
633
+ **kwargs,
634
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
635
+ if attention_mask is not None and torch.any(~attention_mask.bool()):
636
+ attention_mask = attention_mask.bool()
637
+ else:
638
+ attention_mask = None
639
+
640
+ # MHA
641
+ if self.n_head == self.n_head_kv:
642
+ if past_key_values is None:
643
+ # If `past_key_values` are not supplied, we run self-attention
644
+ attn_output = self._forward_self_attn(x, attention_mask)
645
+ else:
646
+ # If `past_key_values` are supplied, it means that we might have cached values and
647
+ # could take advantage of cross-attention
648
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
649
+ # MQA / GQA
650
+ else:
651
+ # Regardless of `past_key_values` being supplied or not, it always use cross-attention
652
+ # because `q` and `kv` lengths might be different
653
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
654
+
655
+ output = rearrange(attn_output, "... h d -> ... (h d)")
656
+ output = self.out_proj(output)
657
+
658
+ return output if not self.return_residual else (output, x)
659
+
660
+
661
+ class ParallelBlock(nn.Module):
662
+ """Parallel block.
663
+
664
+ This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
665
+
666
+ """
667
+
668
+ def __init__(
669
+ self,
670
+ config: PretrainedConfig,
671
+ block_idx: Optional[int] = None,
672
+ ) -> None:
673
+ super().__init__()
674
+
675
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
676
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
677
+ self.block_idx = block_idx
678
+
679
+ self.mixer = MHA(config, layer_idx=block_idx)
680
+ self.mlp = MLP(config)
681
+
682
+ def forward(
683
+ self,
684
+ hidden_states: torch.FloatTensor,
685
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
686
+ attention_mask: Optional[torch.BoolTensor] = None,
687
+ **kwargs,
688
+ ) -> torch.FloatTensor:
689
+ residual = hidden_states
690
+ hidden_states = self.ln(hidden_states)
691
+
692
+ attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask)
693
+ if isinstance(attn_outputs, tuple):
694
+ attn_outputs = attn_outputs[0]
695
+
696
+ attn_outputs = self.resid_dropout(attn_outputs)
697
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
698
+
699
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
700
+
701
+ return hidden_states
702
+
703
+
704
+ class CausalLMHead(nn.Module):
705
+ """Causal Language Modeling head.
706
+
707
+ Reference:
708
+ Improving Language Understanding by Generative Pre-Training.
709
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
710
+
711
+ """
712
+
713
+ def __init__(self, config: PretrainedConfig) -> None:
714
+ super().__init__()
715
+
716
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
717
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
718
+
719
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
720
+ hidden_states = self.ln(hidden_states)
721
+ logits = self.linear(hidden_states).to(torch.float32)
722
+
723
+ return logits
724
+
725
+
726
+ class CausalLMLoss(nn.Module):
727
+ """Causal Language Modeling loss.
728
+
729
+ Reference:
730
+ Improving Language Understanding by Generative Pre-Training.
731
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
732
+
733
+ """
734
+
735
+ def __init__(self, shift_labels: bool = True) -> None:
736
+ super().__init__()
737
+
738
+ self.shift_labels = shift_labels
739
+ self.loss_fct = nn.CrossEntropyLoss()
740
+
741
+ def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
742
+ if self.shift_labels:
743
+ logits = logits[..., :-1, :].contiguous()
744
+ labels = labels[..., 1:].contiguous()
745
+
746
+ loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
747
+
748
+ return loss
749
+
750
+
751
+ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
752
+ """MixFormer (sequential for DeepSpeed) pre-trained model."""
753
+
754
+ config_class = MixFormerSequentialConfig
755
+ base_model_prefix = "transformer"
756
+ supports_gradient_checkpointing = True
757
+
758
+ def __init__(self, *inputs, **kwargs) -> None:
759
+ super().__init__(*inputs, **kwargs)
760
+
761
+ def _init_weights(self, module: nn.Module) -> None:
762
+ if isinstance(module, (nn.Linear,)):
763
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
764
+ if module.bias is not None:
765
+ module.bias.data.zero_()
766
+ elif isinstance(module, nn.Embedding):
767
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
768
+ if module.padding_idx is not None:
769
+ module.weight.data[module.padding_idx].zero_()
770
+ elif isinstance(module, nn.LayerNorm):
771
+ if module.bias is not None:
772
+ module.bias.data.zero_()
773
+ module.weight.data.fill_(1.0)
774
+
775
+ def prepare_inputs_for_generation(
776
+ self,
777
+ input_ids: torch.LongTensor,
778
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
779
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
780
+ **kwargs,
781
+ ) -> Dict[str, Any]:
782
+ if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
783
+ past_key_values = InferenceParams(
784
+ max_seqlen=self.config.n_positions,
785
+ max_batch_size=input_ids.shape[0],
786
+ seqlen_offset=0,
787
+ batch_size_offset=0,
788
+ key_value_memory_dict={},
789
+ lengths_per_sample=None,
790
+ )
791
+ else:
792
+ # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
793
+ past_key_values.seqlen_offset = len(input_ids[0]) - 1
794
+ input_ids = input_ids[:, -1].unsqueeze(-1)
795
+
796
+ return {
797
+ "input_ids": input_ids,
798
+ "past_key_values": past_key_values,
799
+ "attention_mask": attention_mask,
800
+ }
801
+
802
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False) -> None:
803
+ if isinstance(module, MixFormerSequentialPreTrainedModel):
804
+ module.gradient_checkpointing = value
805
+
806
+
807
+ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
808
+ """MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
809
+
810
+ _keys_to_ignore_on_load_missing = [""]
811
+ _keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
812
+ _no_split_modules = ["ParallelBlock"]
813
+
814
+ def __init__(self, config: MixFormerSequentialConfig) -> None:
815
+ super().__init__(config)
816
+
817
+ modules = [Embedding(config)]
818
+ modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
819
+ modules.append(CausalLMHead(config))
820
+
821
+ self.layers = nn.Sequential(*modules)
822
+ self.loss = CausalLMLoss()
823
+
824
+ self.post_init()
825
+
826
+ def get_input_embeddings(self) -> nn.Embedding:
827
+ return self.layers[0].wte
828
+
829
+ def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
830
+ self.layers[0].wte = new_embeddings
831
+
832
+ def get_output_embeddings(self) -> nn.Linear:
833
+ return self.layers[-1].linear
834
+
835
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
836
+ self.layers[-1].linear = new_embeddings
837
+
838
+ def forward(
839
+ self,
840
+ input_ids: torch.LongTensor,
841
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
842
+ attention_mask: Optional[torch.BoolTensor] = None,
843
+ labels: Optional[torch.LongTensor] = None,
844
+ **kwargs,
845
+ ) -> CausalLMOutputWithPast:
846
+ hidden_layer = self.layers[0](input_ids)
847
+ for module in self.layers[1:-1]:
848
+ hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
849
+ lm_logits = self.layers[-1](hidden_layer)
850
+
851
+ loss = None
852
+ if labels is not None:
853
+ loss = self.loss(lm_logits, labels)
854
+
855
+ return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
data/model/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 11118735360
4
+ },
5
+ "weight_map": {
6
+ "layers.0.wte.weight": "pytorch_model-00001-of-00002.bin",
7
+ "layers.1.ln.bias": "pytorch_model-00001-of-00002.bin",
8
+ "layers.1.ln.weight": "pytorch_model-00001-of-00002.bin",
9
+ "layers.1.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
10
+ "layers.1.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
11
+ "layers.1.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
12
+ "layers.1.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
13
+ "layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
14
+ "layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
15
+ "layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
16
+ "layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
17
+ "layers.10.ln.bias": "pytorch_model-00001-of-00002.bin",
18
+ "layers.10.ln.weight": "pytorch_model-00001-of-00002.bin",
19
+ "layers.10.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
20
+ "layers.10.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
21
+ "layers.10.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
22
+ "layers.10.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
24
+ "layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
25
+ "layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
26
+ "layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
27
+ "layers.11.ln.bias": "pytorch_model-00001-of-00002.bin",
28
+ "layers.11.ln.weight": "pytorch_model-00001-of-00002.bin",
29
+ "layers.11.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
30
+ "layers.11.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
31
+ "layers.11.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
32
+ "layers.11.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
34
+ "layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
35
+ "layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
36
+ "layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
37
+ "layers.12.ln.bias": "pytorch_model-00001-of-00002.bin",
38
+ "layers.12.ln.weight": "pytorch_model-00001-of-00002.bin",
39
+ "layers.12.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
40
+ "layers.12.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
41
+ "layers.12.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
42
+ "layers.12.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
44
+ "layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
45
+ "layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
46
+ "layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
47
+ "layers.13.ln.bias": "pytorch_model-00001-of-00002.bin",
48
+ "layers.13.ln.weight": "pytorch_model-00001-of-00002.bin",
49
+ "layers.13.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
50
+ "layers.13.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
51
+ "layers.13.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
52
+ "layers.13.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
54
+ "layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
55
+ "layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
56
+ "layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
57
+ "layers.14.ln.bias": "pytorch_model-00001-of-00002.bin",
58
+ "layers.14.ln.weight": "pytorch_model-00001-of-00002.bin",
59
+ "layers.14.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
60
+ "layers.14.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
61
+ "layers.14.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
62
+ "layers.14.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
63
+ "layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
64
+ "layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
65
+ "layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
66
+ "layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
67
+ "layers.15.ln.bias": "pytorch_model-00001-of-00002.bin",
68
+ "layers.15.ln.weight": "pytorch_model-00001-of-00002.bin",
69
+ "layers.15.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
70
+ "layers.15.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
71
+ "layers.15.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
72
+ "layers.15.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
74
+ "layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
75
+ "layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
76
+ "layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
77
+ "layers.16.ln.bias": "pytorch_model-00001-of-00002.bin",
78
+ "layers.16.ln.weight": "pytorch_model-00001-of-00002.bin",
79
+ "layers.16.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
80
+ "layers.16.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
81
+ "layers.16.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
82
+ "layers.16.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
84
+ "layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
85
+ "layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
86
+ "layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
87
+ "layers.17.ln.bias": "pytorch_model-00001-of-00002.bin",
88
+ "layers.17.ln.weight": "pytorch_model-00001-of-00002.bin",
89
+ "layers.17.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
90
+ "layers.17.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
91
+ "layers.17.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
92
+ "layers.17.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
94
+ "layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
95
+ "layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
96
+ "layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
97
+ "layers.18.ln.bias": "pytorch_model-00001-of-00002.bin",
98
+ "layers.18.ln.weight": "pytorch_model-00001-of-00002.bin",
99
+ "layers.18.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
100
+ "layers.18.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
101
+ "layers.18.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
102
+ "layers.18.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
103
+ "layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
104
+ "layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
105
+ "layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
106
+ "layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
107
+ "layers.19.ln.bias": "pytorch_model-00001-of-00002.bin",
108
+ "layers.19.ln.weight": "pytorch_model-00001-of-00002.bin",
109
+ "layers.19.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
110
+ "layers.19.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
111
+ "layers.19.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
112
+ "layers.19.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
114
+ "layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
115
+ "layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
116
+ "layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
117
+ "layers.2.ln.bias": "pytorch_model-00001-of-00002.bin",
118
+ "layers.2.ln.weight": "pytorch_model-00001-of-00002.bin",
119
+ "layers.2.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
120
+ "layers.2.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
121
+ "layers.2.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
122
+ "layers.2.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
124
+ "layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
125
+ "layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
126
+ "layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
127
+ "layers.20.ln.bias": "pytorch_model-00001-of-00002.bin",
128
+ "layers.20.ln.weight": "pytorch_model-00001-of-00002.bin",
129
+ "layers.20.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
130
+ "layers.20.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
131
+ "layers.20.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
132
+ "layers.20.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
134
+ "layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
135
+ "layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
136
+ "layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
137
+ "layers.21.ln.bias": "pytorch_model-00001-of-00002.bin",
138
+ "layers.21.ln.weight": "pytorch_model-00001-of-00002.bin",
139
+ "layers.21.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
140
+ "layers.21.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
141
+ "layers.21.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
142
+ "layers.21.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
144
+ "layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
145
+ "layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
146
+ "layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
147
+ "layers.22.ln.bias": "pytorch_model-00001-of-00002.bin",
148
+ "layers.22.ln.weight": "pytorch_model-00001-of-00002.bin",
149
+ "layers.22.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
150
+ "layers.22.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
151
+ "layers.22.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
152
+ "layers.22.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
153
+ "layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
154
+ "layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
155
+ "layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
156
+ "layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
157
+ "layers.23.ln.bias": "pytorch_model-00001-of-00002.bin",
158
+ "layers.23.ln.weight": "pytorch_model-00001-of-00002.bin",
159
+ "layers.23.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
160
+ "layers.23.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
161
+ "layers.23.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
162
+ "layers.23.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
163
+ "layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
164
+ "layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
165
+ "layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
166
+ "layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
167
+ "layers.24.ln.bias": "pytorch_model-00001-of-00002.bin",
168
+ "layers.24.ln.weight": "pytorch_model-00001-of-00002.bin",
169
+ "layers.24.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
170
+ "layers.24.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
171
+ "layers.24.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
172
+ "layers.24.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
173
+ "layers.24.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
174
+ "layers.24.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
175
+ "layers.24.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
176
+ "layers.24.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
177
+ "layers.25.ln.bias": "pytorch_model-00001-of-00002.bin",
178
+ "layers.25.ln.weight": "pytorch_model-00001-of-00002.bin",
179
+ "layers.25.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
180
+ "layers.25.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
181
+ "layers.25.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
182
+ "layers.25.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
183
+ "layers.25.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
184
+ "layers.25.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
185
+ "layers.25.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
186
+ "layers.25.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
187
+ "layers.26.ln.bias": "pytorch_model-00001-of-00002.bin",
188
+ "layers.26.ln.weight": "pytorch_model-00001-of-00002.bin",
189
+ "layers.26.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
190
+ "layers.26.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
191
+ "layers.26.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
192
+ "layers.26.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
193
+ "layers.26.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
194
+ "layers.26.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
195
+ "layers.26.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
196
+ "layers.26.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
197
+ "layers.27.ln.bias": "pytorch_model-00001-of-00002.bin",
198
+ "layers.27.ln.weight": "pytorch_model-00001-of-00002.bin",
199
+ "layers.27.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
200
+ "layers.27.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
201
+ "layers.27.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
202
+ "layers.27.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
203
+ "layers.27.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
204
+ "layers.27.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
205
+ "layers.27.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
206
+ "layers.27.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
207
+ "layers.28.ln.bias": "pytorch_model-00001-of-00002.bin",
208
+ "layers.28.ln.weight": "pytorch_model-00001-of-00002.bin",
209
+ "layers.28.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
210
+ "layers.28.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
211
+ "layers.28.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
212
+ "layers.28.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
213
+ "layers.28.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
214
+ "layers.28.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
215
+ "layers.28.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
216
+ "layers.28.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
217
+ "layers.29.ln.bias": "pytorch_model-00001-of-00002.bin",
218
+ "layers.29.ln.weight": "pytorch_model-00001-of-00002.bin",
219
+ "layers.29.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
220
+ "layers.29.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
221
+ "layers.29.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
222
+ "layers.29.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "layers.29.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
224
+ "layers.29.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
225
+ "layers.29.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
226
+ "layers.29.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
227
+ "layers.3.ln.bias": "pytorch_model-00001-of-00002.bin",
228
+ "layers.3.ln.weight": "pytorch_model-00001-of-00002.bin",
229
+ "layers.3.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
230
+ "layers.3.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
231
+ "layers.3.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
232
+ "layers.3.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
233
+ "layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
234
+ "layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
235
+ "layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
236
+ "layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
237
+ "layers.30.ln.bias": "pytorch_model-00001-of-00002.bin",
238
+ "layers.30.ln.weight": "pytorch_model-00001-of-00002.bin",
239
+ "layers.30.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
240
+ "layers.30.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
241
+ "layers.30.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
242
+ "layers.30.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
243
+ "layers.30.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
244
+ "layers.30.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
245
+ "layers.30.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
246
+ "layers.30.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
247
+ "layers.31.ln.bias": "pytorch_model-00001-of-00002.bin",
248
+ "layers.31.ln.weight": "pytorch_model-00001-of-00002.bin",
249
+ "layers.31.mixer.Wqkv.bias": "pytorch_model-00002-of-00002.bin",
250
+ "layers.31.mixer.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
251
+ "layers.31.mixer.out_proj.bias": "pytorch_model-00002-of-00002.bin",
252
+ "layers.31.mixer.out_proj.weight": "pytorch_model-00002-of-00002.bin",
253
+ "layers.31.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
254
+ "layers.31.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
255
+ "layers.31.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
256
+ "layers.31.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
257
+ "layers.32.ln.bias": "pytorch_model-00002-of-00002.bin",
258
+ "layers.32.ln.weight": "pytorch_model-00002-of-00002.bin",
259
+ "layers.32.mixer.Wqkv.bias": "pytorch_model-00002-of-00002.bin",
260
+ "layers.32.mixer.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
261
+ "layers.32.mixer.out_proj.bias": "pytorch_model-00002-of-00002.bin",
262
+ "layers.32.mixer.out_proj.weight": "pytorch_model-00002-of-00002.bin",
263
+ "layers.32.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
264
+ "layers.32.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
265
+ "layers.32.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
266
+ "layers.32.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
267
+ "layers.33.linear.bias": "pytorch_model-00002-of-00002.bin",
268
+ "layers.33.linear.weight": "pytorch_model-00002-of-00002.bin",
269
+ "layers.33.ln.bias": "pytorch_model-00002-of-00002.bin",
270
+ "layers.33.ln.weight": "pytorch_model-00002-of-00002.bin",
271
+ "layers.4.ln.bias": "pytorch_model-00001-of-00002.bin",
272
+ "layers.4.ln.weight": "pytorch_model-00001-of-00002.bin",
273
+ "layers.4.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
274
+ "layers.4.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
275
+ "layers.4.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
276
+ "layers.4.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
278
+ "layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
279
+ "layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
280
+ "layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
281
+ "layers.5.ln.bias": "pytorch_model-00001-of-00002.bin",
282
+ "layers.5.ln.weight": "pytorch_model-00001-of-00002.bin",
283
+ "layers.5.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
284
+ "layers.5.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
285
+ "layers.5.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
286
+ "layers.5.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
288
+ "layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
289
+ "layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
290
+ "layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
291
+ "layers.6.ln.bias": "pytorch_model-00001-of-00002.bin",
292
+ "layers.6.ln.weight": "pytorch_model-00001-of-00002.bin",
293
+ "layers.6.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
294
+ "layers.6.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
295
+ "layers.6.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
296
+ "layers.6.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
297
+ "layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
298
+ "layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
299
+ "layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
300
+ "layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
301
+ "layers.7.ln.bias": "pytorch_model-00001-of-00002.bin",
302
+ "layers.7.ln.weight": "pytorch_model-00001-of-00002.bin",
303
+ "layers.7.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
304
+ "layers.7.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
305
+ "layers.7.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
306
+ "layers.7.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
307
+ "layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
308
+ "layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
309
+ "layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
310
+ "layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
311
+ "layers.8.ln.bias": "pytorch_model-00001-of-00002.bin",
312
+ "layers.8.ln.weight": "pytorch_model-00001-of-00002.bin",
313
+ "layers.8.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
314
+ "layers.8.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
315
+ "layers.8.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
316
+ "layers.8.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
317
+ "layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
318
+ "layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
319
+ "layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
320
+ "layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
321
+ "layers.9.ln.bias": "pytorch_model-00001-of-00002.bin",
322
+ "layers.9.ln.weight": "pytorch_model-00001-of-00002.bin",
323
+ "layers.9.mixer.Wqkv.bias": "pytorch_model-00001-of-00002.bin",
324
+ "layers.9.mixer.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
325
+ "layers.9.mixer.out_proj.bias": "pytorch_model-00001-of-00002.bin",
326
+ "layers.9.mixer.out_proj.weight": "pytorch_model-00001-of-00002.bin",
327
+ "layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
328
+ "layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
329
+ "layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
330
+ "layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin"
331
+ }
332
+ }
data/tokenizer/added_tokens.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257,
40
+ "<|endoftext|>": 50256
41
+ }
data/tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
data/tokenizer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
data/tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "additional_special_tokens": [],
318
+ "bos_token": "<|endoftext|>",
319
+ "clean_up_tokenization_spaces": true,
320
+ "eos_token": "<|endoftext|>",
321
+ "model_max_length": 2048,
322
+ "tokenizer_class": "CodeGenTokenizer",
323
+ "unk_token": "<|endoftext|>"
324
+ }
data/tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff