Sirianth commited on
Commit
fa01fab
1 Parent(s): 2de5857

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.71 +/- 0.88
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e80c9c4b55d62e19a6dfb87a06d264e0239f301143694f19ccee96bf0b8082d
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0cb33148b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f0cb3316150>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677355703334608184,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABdDDPhbfGLz3QA0/BdDDPhbfGLz3QA0/BdDDPhbfGLz3QA0/BdDDPhbfGLz3QA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbDuwP0DUSL88xjM+2HSuPyin8r5/2/U+9l6yvevejb/MzUy/fpG0PuOCzz8WHAS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAF0MM+Ft8YvPdADT9msIw8bvxOu1WaADwF0MM+Ft8YvPdADT9msIw8bvxOu1WaADwF0MM+Ft8YvPdADT9msIw8bvxOu1WaADwF0MM+Ft8YvPdADT9msIw8bvxOu1WaADyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.38244644 -0.00933053 0.55177253]\n [ 0.38244644 -0.00933053 0.55177253]\n [ 0.38244644 -0.00933053 0.55177253]\n [ 0.38244644 -0.00933053 0.55177253]]",
60
+ "desired_goal": "[[ 1.3768134 -0.7844887 0.17556089]\n [ 1.3629408 -0.47393155 0.48019025]\n [-0.08709519 -1.1083654 -0.8000152 ]\n [ 0.35267252 1.6211818 -0.51605356]]",
61
+ "observation": "[[ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]\n [ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]\n [ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]\n [ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/dNhPWnIyr0nZ8M9VkigPKpS9D1NPc09ZQJ6u+W+Br3DiFU+n6YtPWOSg70AoQY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.05513381 -0.09901506 0.09541159]\n [ 0.01956574 0.11929829 0.10021458]\n [-0.00381484 -0.03289689 0.20852952]\n [ 0.04239523 -0.06424405 0.03286839]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/OHnvwevDMCUhpRSlIwBbJRLMowBdJRHQKcpp/vOQhh1fZQoaAZoCWgPQwiNCMbBpSMEwJSGlFKUaBVLMmgWR0CnKWFJHy3DdX2UKGgGaAloD0MIRgpl4esLA8CUhpRSlGgVSzJoFkdApykcCNjslnV9lChoBmgJaA9DCM0f09o0FgjAlIaUUpRoFUsyaBZHQKco1kQwsXl1fZQoaAZoCWgPQwi+Ed2zrnELwJSGlFKUaBVLMmgWR0CnKt/t6X0HdX2UKGgGaAloD0MIinJp/MJLAsCUhpRSlGgVSzJoFkdApyqZNfw7T3V9lChoBmgJaA9DCHxhMlUwig/AlIaUUpRoFUsyaBZHQKcqVEBsANp1fZQoaAZoCWgPQwgTDr3Fw/sCwJSGlFKUaBVLMmgWR0CnKg6VUuL8dX2UKGgGaAloD0MIzCcrhquDA8CUhpRSlGgVSzJoFkdApywSn1nM+3V9lChoBmgJaA9DCNrKS/4nvwnAlIaUUpRoFUsyaBZHQKcry8aGYa51fZQoaAZoCWgPQwgpzeZxGEwCwJSGlFKUaBVLMmgWR0CnK4Z8rqdIdX2UKGgGaAloD0MI6nk3FhRWEsCUhpRSlGgVSzJoFkdApytAkeIVM3V9lChoBmgJaA9DCAuz0M5pphXAlIaUUpRoFUsyaBZHQKctRShJyyV1fZQoaAZoCWgPQwiS5/o+HCQFwJSGlFKUaBVLMmgWR0CnLP6Ln9vTdX2UKGgGaAloD0MIacai6ewEE8CUhpRSlGgVSzJoFkdApyy5koWpInV9lChoBmgJaA9DCD90QX3LfA/AlIaUUpRoFUsyaBZHQKcsc+10DEF1fZQoaAZoCWgPQwi5bkp5rQQKwJSGlFKUaBVLMmgWR0CnLn4t6HCXdX2UKGgGaAloD0MIhbacS3FVCsCUhpRSlGgVSzJoFkdApy43bj94vHV9lChoBmgJaA9DCEAziA/sGAnAlIaUUpRoFUsyaBZHQKct8lhw2l51fZQoaAZoCWgPQwik/+VatMACwJSGlFKUaBVLMmgWR0CnLay1NQCTdX2UKGgGaAloD0MIQwQcQpX6AsCUhpRSlGgVSzJoFkdApy/ANRWLgnV9lChoBmgJaA9DCPWhC+pbxgPAlIaUUpRoFUsyaBZHQKcveYyfthN1fZQoaAZoCWgPQwgykj1CzZAJwJSGlFKUaBVLMmgWR0CnLzR6fJ3gdX2UKGgGaAloD0MIRnu8kA5PCMCUhpRSlGgVSzJoFkdApy7u40/GEXV9lChoBmgJaA9DCOs2qP3WThPAlIaUUpRoFUsyaBZHQKcxCvbGm1p1fZQoaAZoCWgPQwjaxwp+GwIDwJSGlFKUaBVLMmgWR0CnMMRqGlANdX2UKGgGaAloD0MI6Sec3VqmAsCUhpRSlGgVSzJoFkdApzB/XAdn03V9lChoBmgJaA9DCB8xem6haxTAlIaUUpRoFUsyaBZHQKcwOZZSvTx1fZQoaAZoCWgPQwi06QjgZvEDwJSGlFKUaBVLMmgWR0CnMkpWFN+LdX2UKGgGaAloD0MIxhSscTY9CcCUhpRSlGgVSzJoFkdApzIDnLaEjHV9lChoBmgJaA9DCHO9baZCXAbAlIaUUpRoFUsyaBZHQKcxvnOjZct1fZQoaAZoCWgPQwgI6SlyiBgEwJSGlFKUaBVLMmgWR0CnMXjO9nK5dX2UKGgGaAloD0MIf4l46/x7AcCUhpRSlGgVSzJoFkdApzOZL5AQhHV9lChoBmgJaA9DCC4bnfNTPAPAlIaUUpRoFUsyaBZHQKczUo4uK4x1fZQoaAZoCWgPQwizJ4HNOTgNwJSGlFKUaBVLMmgWR0CnMw25Yoy9dX2UKGgGaAloD0MIQ1N2+kF9A8CUhpRSlGgVSzJoFkdApzLINgBtDXV9lChoBmgJaA9DCHKkMzDycgLAlIaUUpRoFUsyaBZHQKc06+9rXUZ1fZQoaAZoCWgPQwiPGhNiLskGwJSGlFKUaBVLMmgWR0CnNKXWFvhqdX2UKGgGaAloD0MIOWOYE7TpBMCUhpRSlGgVSzJoFkdApzRg0waisXV9lChoBmgJaA9DCKm9iLZjihHAlIaUUpRoFUsyaBZHQKc0Gzwc5sF1fZQoaAZoCWgPQwjKxRhYx7EIwJSGlFKUaBVLMmgWR0CnNj+bNKRMdX2UKGgGaAloD0MIujE9YYlnC8CUhpRSlGgVSzJoFkdApzX5D1Gsm3V9lChoBmgJaA9DCFwhrMYSdgHAlIaUUpRoFUsyaBZHQKc1s8CgbqB1fZQoaAZoCWgPQwjdmJ6wxMP6v5SGlFKUaBVLMmgWR0CnNW4ffXPJdX2UKGgGaAloD0MI7WMFvw0xB8CUhpRSlGgVSzJoFkdApzebor4FinV9lChoBmgJaA9DCE57Ss6J3QzAlIaUUpRoFUsyaBZHQKc3VQgLZzx1fZQoaAZoCWgPQwiCNjl80okNwJSGlFKUaBVLMmgWR0CnNw/4yoGZdX2UKGgGaAloD0MIPMCTFi5LCcCUhpRSlGgVSzJoFkdApzbKSRr8BXV9lChoBmgJaA9DCO28jc2OFBLAlIaUUpRoFUsyaBZHQKc44Xa8HwB1fZQoaAZoCWgPQwjwT6kSZZ8YwJSGlFKUaBVLMmgWR0CnOJrIHTqjdX2UKGgGaAloD0MIvf4kPnfC+7+UhpRSlGgVSzJoFkdApzhVuzhP03V9lChoBmgJaA9DCEAVN24xXw7AlIaUUpRoFUsyaBZHQKc4EDifg751fZQoaAZoCWgPQwiqtTAL7awTwJSGlFKUaBVLMmgWR0CnOix1PnB+dX2UKGgGaAloD0MIlUkNbQC2AcCUhpRSlGgVSzJoFkdApznl1p0wJ3V9lChoBmgJaA9DCHIaogp/Jg3AlIaUUpRoFUsyaBZHQKc5oNfgJkZ1fZQoaAZoCWgPQwguAmN9A1MDwJSGlFKUaBVLMmgWR0CnOVsl1KXfdX2UKGgGaAloD0MI/0EkQ45NDMCUhpRSlGgVSzJoFkdApztxBomG/XV9lChoBmgJaA9DCHgq4J7nDwnAlIaUUpRoFUsyaBZHQKc7KmgrYoR1fZQoaAZoCWgPQwixbrw7MlYJwJSGlFKUaBVLMmgWR0CnOuUUXYUWdX2UKGgGaAloD0MIDXGsi9tIEMCUhpRSlGgVSzJoFkdApzqfai9Iw3V9lChoBmgJaA9DCC8X8Z2Y9QfAlIaUUpRoFUsyaBZHQKc8vL4etCB1fZQoaAZoCWgPQwiwrDQpBd0FwJSGlFKUaBVLMmgWR0CnPHYigTRIdX2UKGgGaAloD0MI5s+3BUu1CcCUhpRSlGgVSzJoFkdApzwxCfHxSnV9lChoBmgJaA9DCB2QhH07iQ3AlIaUUpRoFUsyaBZHQKc76yJsO5J1fZQoaAZoCWgPQwi0sKcd/loCwJSGlFKUaBVLMmgWR0CnPgIC2c8UdX2UKGgGaAloD0MIhNTt7CsvBcCUhpRSlGgVSzJoFkdApz27jNpudnV9lChoBmgJaA9DCPTF3osvWv6/lIaUUpRoFUsyaBZHQKc9dsZ5zHV1fZQoaAZoCWgPQwge/wWCAIkQwJSGlFKUaBVLMmgWR0CnPTD0163RdX2UKGgGaAloD0MI00z3OqnPEMCUhpRSlGgVSzJoFkdApz9JnOB193V9lChoBmgJaA9DCEhqoWRyKgXAlIaUUpRoFUsyaBZHQKc/AvGIbfh1fZQoaAZoCWgPQwjnUfF/R9QJwJSGlFKUaBVLMmgWR0CnPr2WQfZFdX2UKGgGaAloD0MI5IdKI2Z2D8CUhpRSlGgVSzJoFkdApz54/u9eyHV9lChoBmgJaA9DCGKga19APxTAlIaUUpRoFUsyaBZHQKdAhisGPgh1fZQoaAZoCWgPQwh1VaAWg8cMwJSGlFKUaBVLMmgWR0CnQD9X1anrdX2UKGgGaAloD0MIsVOsGoQJEsCUhpRSlGgVSzJoFkdApz/6U3XI2nV9lChoBmgJaA9DCGN/2T15mAzAlIaUUpRoFUsyaBZHQKc/tHc1wYN1fZQoaAZoCWgPQwiQEru2tzsCwJSGlFKUaBVLMmgWR0CnQarI5o4/dX2UKGgGaAloD0MImu/gJw6AD8CUhpRSlGgVSzJoFkdAp0Fj1uivgXV9lChoBmgJaA9DCCOfVzz1iATAlIaUUpRoFUsyaBZHQKdBHnqVyFR1fZQoaAZoCWgPQwjqswOuK2YDwJSGlFKUaBVLMmgWR0CnQNjiwSrYdX2UKGgGaAloD0MIMEeP39v0/b+UhpRSlGgVSzJoFkdAp0LRiNKh+XV9lChoBmgJaA9DCI0qw7gbxA3AlIaUUpRoFUsyaBZHQKdCiu14Pf91fZQoaAZoCWgPQwgG9S1zuhwRwJSGlFKUaBVLMmgWR0CnQkW0JF9bdX2UKGgGaAloD0MI/5O/e0dNCMCUhpRSlGgVSzJoFkdAp0H/9gnc+XV9lChoBmgJaA9DCG3IPzOIrw/AlIaUUpRoFUsyaBZHQKdEAuq3mV91fZQoaAZoCWgPQwhYb9QK0xcLwJSGlFKUaBVLMmgWR0CnQ7yydFvydX2UKGgGaAloD0MI46dxb34zEMCUhpRSlGgVSzJoFkdAp0N32h7E53V9lChoBmgJaA9DCHpSJjW0IQrAlIaUUpRoFUsyaBZHQKdDMhlDneV1fZQoaAZoCWgPQwg9KZMa2oAEwJSGlFKUaBVLMmgWR0CnRTb3Gn4xdX2UKGgGaAloD0MIgPChREseBMCUhpRSlGgVSzJoFkdAp0TwEEC/5HV9lChoBmgJaA9DCHxinSrfkw/AlIaUUpRoFUsyaBZHQKdEqwyIpH91fZQoaAZoCWgPQwhUVP1K50MFwJSGlFKUaBVLMmgWR0CnRGVeKKpDdX2UKGgGaAloD0MIniPyXUq9CMCUhpRSlGgVSzJoFkdAp0ZsZWJaaHV9lChoBmgJaA9DCLecS3FVqRPAlIaUUpRoFUsyaBZHQKdGJc2R7qp1fZQoaAZoCWgPQwhszsEzoTkQwJSGlFKUaBVLMmgWR0CnReC7K7qZdX2UKGgGaAloD0MIh8Q9lj6UAMCUhpRSlGgVSzJoFkdAp0WbKHO8kHV9lChoBmgJaA9DCIdu9gfKPRDAlIaUUpRoFUsyaBZHQKdHowGGEf11fZQoaAZoCWgPQwh8KxIT1EATwJSGlFKUaBVLMmgWR0CnR1xvegtfdX2UKGgGaAloD0MIwylz841IC8CUhpRSlGgVSzJoFkdAp0cXYjB2wHV9lChoBmgJaA9DCLAe963WCQfAlIaUUpRoFUsyaBZHQKdG0XNTtLN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60eae8ddd5d7619276131e7f4b1db42a765fbb1d936eb38783cc46738efebf2a
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f42d6213ca1b06ba22afc1af036a6e13a8779f7771da8ba9900dee61b5809ef6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0cb33148b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0cb3316150>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677355703334608184, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABdDDPhbfGLz3QA0/BdDDPhbfGLz3QA0/BdDDPhbfGLz3QA0/BdDDPhbfGLz3QA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbDuwP0DUSL88xjM+2HSuPyin8r5/2/U+9l6yvevejb/MzUy/fpG0PuOCzz8WHAS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAF0MM+Ft8YvPdADT9msIw8bvxOu1WaADwF0MM+Ft8YvPdADT9msIw8bvxOu1WaADwF0MM+Ft8YvPdADT9msIw8bvxOu1WaADwF0MM+Ft8YvPdADT9msIw8bvxOu1WaADyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38244644 -0.00933053 0.55177253]\n [ 0.38244644 -0.00933053 0.55177253]\n [ 0.38244644 -0.00933053 0.55177253]\n [ 0.38244644 -0.00933053 0.55177253]]", "desired_goal": "[[ 1.3768134 -0.7844887 0.17556089]\n [ 1.3629408 -0.47393155 0.48019025]\n [-0.08709519 -1.1083654 -0.8000152 ]\n [ 0.35267252 1.6211818 -0.51605356]]", "observation": "[[ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]\n [ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]\n [ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]\n [ 0.38244644 -0.00933053 0.55177253 0.01717396 -0.00315836 0.0078493 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/dNhPWnIyr0nZ8M9VkigPKpS9D1NPc09ZQJ6u+W+Br3DiFU+n6YtPWOSg70AoQY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05513381 -0.09901506 0.09541159]\n [ 0.01956574 0.11929829 0.10021458]\n [-0.00381484 -0.03289689 0.20852952]\n [ 0.04239523 -0.06424405 0.03286839]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/OHnvwevDMCUhpRSlIwBbJRLMowBdJRHQKcpp/vOQhh1fZQoaAZoCWgPQwiNCMbBpSMEwJSGlFKUaBVLMmgWR0CnKWFJHy3DdX2UKGgGaAloD0MIRgpl4esLA8CUhpRSlGgVSzJoFkdApykcCNjslnV9lChoBmgJaA9DCM0f09o0FgjAlIaUUpRoFUsyaBZHQKco1kQwsXl1fZQoaAZoCWgPQwi+Ed2zrnELwJSGlFKUaBVLMmgWR0CnKt/t6X0HdX2UKGgGaAloD0MIinJp/MJLAsCUhpRSlGgVSzJoFkdApyqZNfw7T3V9lChoBmgJaA9DCHxhMlUwig/AlIaUUpRoFUsyaBZHQKcqVEBsANp1fZQoaAZoCWgPQwgTDr3Fw/sCwJSGlFKUaBVLMmgWR0CnKg6VUuL8dX2UKGgGaAloD0MIzCcrhquDA8CUhpRSlGgVSzJoFkdApywSn1nM+3V9lChoBmgJaA9DCNrKS/4nvwnAlIaUUpRoFUsyaBZHQKcry8aGYa51fZQoaAZoCWgPQwgpzeZxGEwCwJSGlFKUaBVLMmgWR0CnK4Z8rqdIdX2UKGgGaAloD0MI6nk3FhRWEsCUhpRSlGgVSzJoFkdApytAkeIVM3V9lChoBmgJaA9DCAuz0M5pphXAlIaUUpRoFUsyaBZHQKctRShJyyV1fZQoaAZoCWgPQwiS5/o+HCQFwJSGlFKUaBVLMmgWR0CnLP6Ln9vTdX2UKGgGaAloD0MIacai6ewEE8CUhpRSlGgVSzJoFkdApyy5koWpInV9lChoBmgJaA9DCD90QX3LfA/AlIaUUpRoFUsyaBZHQKcsc+10DEF1fZQoaAZoCWgPQwi5bkp5rQQKwJSGlFKUaBVLMmgWR0CnLn4t6HCXdX2UKGgGaAloD0MIhbacS3FVCsCUhpRSlGgVSzJoFkdApy43bj94vHV9lChoBmgJaA9DCEAziA/sGAnAlIaUUpRoFUsyaBZHQKct8lhw2l51fZQoaAZoCWgPQwik/+VatMACwJSGlFKUaBVLMmgWR0CnLay1NQCTdX2UKGgGaAloD0MIQwQcQpX6AsCUhpRSlGgVSzJoFkdApy/ANRWLgnV9lChoBmgJaA9DCPWhC+pbxgPAlIaUUpRoFUsyaBZHQKcveYyfthN1fZQoaAZoCWgPQwgykj1CzZAJwJSGlFKUaBVLMmgWR0CnLzR6fJ3gdX2UKGgGaAloD0MIRnu8kA5PCMCUhpRSlGgVSzJoFkdApy7u40/GEXV9lChoBmgJaA9DCOs2qP3WThPAlIaUUpRoFUsyaBZHQKcxCvbGm1p1fZQoaAZoCWgPQwjaxwp+GwIDwJSGlFKUaBVLMmgWR0CnMMRqGlANdX2UKGgGaAloD0MI6Sec3VqmAsCUhpRSlGgVSzJoFkdApzB/XAdn03V9lChoBmgJaA9DCB8xem6haxTAlIaUUpRoFUsyaBZHQKcwOZZSvTx1fZQoaAZoCWgPQwi06QjgZvEDwJSGlFKUaBVLMmgWR0CnMkpWFN+LdX2UKGgGaAloD0MIxhSscTY9CcCUhpRSlGgVSzJoFkdApzIDnLaEjHV9lChoBmgJaA9DCHO9baZCXAbAlIaUUpRoFUsyaBZHQKcxvnOjZct1fZQoaAZoCWgPQwgI6SlyiBgEwJSGlFKUaBVLMmgWR0CnMXjO9nK5dX2UKGgGaAloD0MIf4l46/x7AcCUhpRSlGgVSzJoFkdApzOZL5AQhHV9lChoBmgJaA9DCC4bnfNTPAPAlIaUUpRoFUsyaBZHQKczUo4uK4x1fZQoaAZoCWgPQwizJ4HNOTgNwJSGlFKUaBVLMmgWR0CnMw25Yoy9dX2UKGgGaAloD0MIQ1N2+kF9A8CUhpRSlGgVSzJoFkdApzLINgBtDXV9lChoBmgJaA9DCHKkMzDycgLAlIaUUpRoFUsyaBZHQKc06+9rXUZ1fZQoaAZoCWgPQwiPGhNiLskGwJSGlFKUaBVLMmgWR0CnNKXWFvhqdX2UKGgGaAloD0MIOWOYE7TpBMCUhpRSlGgVSzJoFkdApzRg0waisXV9lChoBmgJaA9DCKm9iLZjihHAlIaUUpRoFUsyaBZHQKc0Gzwc5sF1fZQoaAZoCWgPQwjKxRhYx7EIwJSGlFKUaBVLMmgWR0CnNj+bNKRMdX2UKGgGaAloD0MIujE9YYlnC8CUhpRSlGgVSzJoFkdApzX5D1Gsm3V9lChoBmgJaA9DCFwhrMYSdgHAlIaUUpRoFUsyaBZHQKc1s8CgbqB1fZQoaAZoCWgPQwjdmJ6wxMP6v5SGlFKUaBVLMmgWR0CnNW4ffXPJdX2UKGgGaAloD0MI7WMFvw0xB8CUhpRSlGgVSzJoFkdApzebor4FinV9lChoBmgJaA9DCE57Ss6J3QzAlIaUUpRoFUsyaBZHQKc3VQgLZzx1fZQoaAZoCWgPQwiCNjl80okNwJSGlFKUaBVLMmgWR0CnNw/4yoGZdX2UKGgGaAloD0MIPMCTFi5LCcCUhpRSlGgVSzJoFkdApzbKSRr8BXV9lChoBmgJaA9DCO28jc2OFBLAlIaUUpRoFUsyaBZHQKc44Xa8HwB1fZQoaAZoCWgPQwjwT6kSZZ8YwJSGlFKUaBVLMmgWR0CnOJrIHTqjdX2UKGgGaAloD0MIvf4kPnfC+7+UhpRSlGgVSzJoFkdApzhVuzhP03V9lChoBmgJaA9DCEAVN24xXw7AlIaUUpRoFUsyaBZHQKc4EDifg751fZQoaAZoCWgPQwiqtTAL7awTwJSGlFKUaBVLMmgWR0CnOix1PnB+dX2UKGgGaAloD0MIlUkNbQC2AcCUhpRSlGgVSzJoFkdApznl1p0wJ3V9lChoBmgJaA9DCHIaogp/Jg3AlIaUUpRoFUsyaBZHQKc5oNfgJkZ1fZQoaAZoCWgPQwguAmN9A1MDwJSGlFKUaBVLMmgWR0CnOVsl1KXfdX2UKGgGaAloD0MI/0EkQ45NDMCUhpRSlGgVSzJoFkdApztxBomG/XV9lChoBmgJaA9DCHgq4J7nDwnAlIaUUpRoFUsyaBZHQKc7KmgrYoR1fZQoaAZoCWgPQwixbrw7MlYJwJSGlFKUaBVLMmgWR0CnOuUUXYUWdX2UKGgGaAloD0MIDXGsi9tIEMCUhpRSlGgVSzJoFkdApzqfai9Iw3V9lChoBmgJaA9DCC8X8Z2Y9QfAlIaUUpRoFUsyaBZHQKc8vL4etCB1fZQoaAZoCWgPQwiwrDQpBd0FwJSGlFKUaBVLMmgWR0CnPHYigTRIdX2UKGgGaAloD0MI5s+3BUu1CcCUhpRSlGgVSzJoFkdApzwxCfHxSnV9lChoBmgJaA9DCB2QhH07iQ3AlIaUUpRoFUsyaBZHQKc76yJsO5J1fZQoaAZoCWgPQwi0sKcd/loCwJSGlFKUaBVLMmgWR0CnPgIC2c8UdX2UKGgGaAloD0MIhNTt7CsvBcCUhpRSlGgVSzJoFkdApz27jNpudnV9lChoBmgJaA9DCPTF3osvWv6/lIaUUpRoFUsyaBZHQKc9dsZ5zHV1fZQoaAZoCWgPQwge/wWCAIkQwJSGlFKUaBVLMmgWR0CnPTD0163RdX2UKGgGaAloD0MI00z3OqnPEMCUhpRSlGgVSzJoFkdApz9JnOB193V9lChoBmgJaA9DCEhqoWRyKgXAlIaUUpRoFUsyaBZHQKc/AvGIbfh1fZQoaAZoCWgPQwjnUfF/R9QJwJSGlFKUaBVLMmgWR0CnPr2WQfZFdX2UKGgGaAloD0MI5IdKI2Z2D8CUhpRSlGgVSzJoFkdApz54/u9eyHV9lChoBmgJaA9DCGKga19APxTAlIaUUpRoFUsyaBZHQKdAhisGPgh1fZQoaAZoCWgPQwh1VaAWg8cMwJSGlFKUaBVLMmgWR0CnQD9X1anrdX2UKGgGaAloD0MIsVOsGoQJEsCUhpRSlGgVSzJoFkdApz/6U3XI2nV9lChoBmgJaA9DCGN/2T15mAzAlIaUUpRoFUsyaBZHQKc/tHc1wYN1fZQoaAZoCWgPQwiQEru2tzsCwJSGlFKUaBVLMmgWR0CnQarI5o4/dX2UKGgGaAloD0MImu/gJw6AD8CUhpRSlGgVSzJoFkdAp0Fj1uivgXV9lChoBmgJaA9DCCOfVzz1iATAlIaUUpRoFUsyaBZHQKdBHnqVyFR1fZQoaAZoCWgPQwjqswOuK2YDwJSGlFKUaBVLMmgWR0CnQNjiwSrYdX2UKGgGaAloD0MIMEeP39v0/b+UhpRSlGgVSzJoFkdAp0LRiNKh+XV9lChoBmgJaA9DCI0qw7gbxA3AlIaUUpRoFUsyaBZHQKdCiu14Pf91fZQoaAZoCWgPQwgG9S1zuhwRwJSGlFKUaBVLMmgWR0CnQkW0JF9bdX2UKGgGaAloD0MI/5O/e0dNCMCUhpRSlGgVSzJoFkdAp0H/9gnc+XV9lChoBmgJaA9DCG3IPzOIrw/AlIaUUpRoFUsyaBZHQKdEAuq3mV91fZQoaAZoCWgPQwhYb9QK0xcLwJSGlFKUaBVLMmgWR0CnQ7yydFvydX2UKGgGaAloD0MI46dxb34zEMCUhpRSlGgVSzJoFkdAp0N32h7E53V9lChoBmgJaA9DCHpSJjW0IQrAlIaUUpRoFUsyaBZHQKdDMhlDneV1fZQoaAZoCWgPQwg9KZMa2oAEwJSGlFKUaBVLMmgWR0CnRTb3Gn4xdX2UKGgGaAloD0MIgPChREseBMCUhpRSlGgVSzJoFkdAp0TwEEC/5HV9lChoBmgJaA9DCHxinSrfkw/AlIaUUpRoFUsyaBZHQKdEqwyIpH91fZQoaAZoCWgPQwhUVP1K50MFwJSGlFKUaBVLMmgWR0CnRGVeKKpDdX2UKGgGaAloD0MIniPyXUq9CMCUhpRSlGgVSzJoFkdAp0ZsZWJaaHV9lChoBmgJaA9DCLecS3FVqRPAlIaUUpRoFUsyaBZHQKdGJc2R7qp1fZQoaAZoCWgPQwhszsEzoTkQwJSGlFKUaBVLMmgWR0CnReC7K7qZdX2UKGgGaAloD0MIh8Q9lj6UAMCUhpRSlGgVSzJoFkdAp0WbKHO8kHV9lChoBmgJaA9DCIdu9gfKPRDAlIaUUpRoFUsyaBZHQKdHowGGEf11fZQoaAZoCWgPQwh8KxIT1EATwJSGlFKUaBVLMmgWR0CnR1xvegtfdX2UKGgGaAloD0MIwylz841IC8CUhpRSlGgVSzJoFkdAp0cXYjB2wHV9lChoBmgJaA9DCLAe963WCQfAlIaUUpRoFUsyaBZHQKdG0XNTtLN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (727 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.7100577603792773, "std_reward": 0.8773349622782376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-25T20:58:34.008316"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1f89c3a03c81ce3aec85c7339ecb21ab79c29a852252dc6c07a6b2bb4c88ad
3
+ size 3056