trainerTA
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2020
- Precision: 0.6343
- Recall: 0.6190
- F1: 0.6021
- Accuracy: 0.6190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 7 | 1.1521 | 0.5990 | 0.5714 | 0.5637 | 0.5714 |
| No log | 2.0 | 14 | 1.0289 | 0.6283 | 0.6190 | 0.6147 | 0.6190 |
| No log | 3.0 | 21 | 1.0304 | 0.5797 | 0.5476 | 0.5370 | 0.5476 |
| No log | 4.0 | 28 | 1.0809 | 0.5965 | 0.5833 | 0.5622 | 0.5833 |
| No log | 5.0 | 35 | 1.0613 | 0.6677 | 0.6310 | 0.6329 | 0.6310 |
| No log | 6.0 | 42 | 1.1752 | 0.5776 | 0.5714 | 0.5610 | 0.5714 |
| No log | 7.0 | 49 | 1.1618 | 0.6534 | 0.6190 | 0.6240 | 0.6190 |
| No log | 8.0 | 56 | 1.1973 | 0.5745 | 0.5714 | 0.5627 | 0.5714 |
| No log | 9.0 | 63 | 1.2085 | 0.5835 | 0.5714 | 0.5605 | 0.5714 |
| No log | 10.0 | 70 | 1.2020 | 0.6343 | 0.6190 | 0.6021 | 0.6190 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 6
Model tree for SimoneJLaudani/trainerTA
Base model
distilbert/distilbert-base-uncased