my_awesome_model

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1958
  • Accuracy: 0.9164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1482 0.0507 100 0.2884 0.9044
0.1465 0.1014 200 0.4802 0.8739
0.1523 0.1521 300 0.2684 0.8976
0.1454 0.2027 400 0.4407 0.8696
0.141 0.2534 500 0.2469 0.9106
0.1112 0.3041 600 0.3704 0.8927
0.1368 0.3548 700 0.3799 0.8878
0.0952 0.4055 800 0.3520 0.9041
0.1225 0.4562 900 0.3819 0.8882
0.1245 0.5068 1000 0.2261 0.9101
0.1479 0.5575 1100 0.3054 0.8844
0.1434 0.6082 1200 0.2268 0.9194
0.1622 0.6589 1300 0.2455 0.9053
0.1789 0.7096 1400 0.2411 0.8991
0.1832 0.7603 1500 0.2224 0.9120
0.1855 0.8109 1600 0.2102 0.9105
0.1818 0.8616 1700 0.1893 0.9211
0.1823 0.9123 1800 0.2166 0.9092
0.1632 0.9630 1900 0.1958 0.9164

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SimmiSingh22299/my_awesome_model

Finetuned
(66)
this model