victoriadreis commited on
Commit
ea15bf8
·
1 Parent(s): be19dd6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -12
README.md CHANGED
@@ -6,7 +6,7 @@ language:
6
  - pt
7
 
8
  pipeline_tag: text-classification
9
- base_model: neuralmind/bert-base-portuguese-cased
10
  widget:
11
  - text: 'Bom dia, flor do dia!!'
12
 
@@ -16,24 +16,40 @@ model-index:
16
  - task:
17
  type: text-classfication
18
  dataset:
19
- name: Silly-Machine/TuPyE-Dataset
20
  type: Silly-Machine/TuPyE-Dataset
21
  metrics:
22
- - name: f1
23
- type: f1
24
- value: 64.59
25
- source:
26
- name: Open LLM Leaderboard
27
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
 
 
 
 
 
 
 
 
 
 
28
  ---
29
 
30
  ## Introduction
31
 
32
 
33
- Tupi-BERT-Base is a fine-tuned BERT model designed specifically for binary classification of hate speech in Portuguese. Derived from the [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased), TuPi-Base is refinde solution for addressing hate speech concerns.
 
 
 
34
  For more details or specific inquiries, please refer to the [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/).
35
 
36
- The efficacy of Language Models can exhibit notable variations when confronted with a shift in domain between training and test data. In the creation of a specialized Portuguese Language Model tailored for hate speech classification, the original BERTimbau model underwent fine-tuning processe carried out on the [TuPi Hate Speech DataSet](https://huggingface.co/datasets/FpOliveira/TuPi-Portuguese-Hate-Speech-Dataset-Binary), sourced from diverse social networks.
 
 
 
37
 
38
  ## Available models
39
 
@@ -44,7 +60,7 @@ The efficacy of Language Models can exhibit notable variations when confronted w
44
  | `Silly-Machine/TuPy-Bert-Base-Multilabel` | BERT-Base | 12 | 109M |
45
  | `Silly-Machine/TuPy-Bert-Large-Multilabel` | BERT-Large | 24 | 334M |
46
 
47
- ## Example usage usage
48
 
49
  ```python
50
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
@@ -76,5 +92,4 @@ def classify_hate_speech(model_name, text):
76
  model_name = "Silly-Machine/TuPy-Bert-Large-Multilabel"
77
  text = "Bom dia, flor do dia!!"
78
  classify_hate_speech(model_name, text)
79
-
80
  ```
 
6
  - pt
7
 
8
  pipeline_tag: text-classification
9
+ base_model: neuralmind/bert-large-portuguese-cased
10
  widget:
11
  - text: 'Bom dia, flor do dia!!'
12
 
 
16
  - task:
17
  type: text-classfication
18
  dataset:
19
+ name: TuPyE-Dataset
20
  type: Silly-Machine/TuPyE-Dataset
21
  metrics:
22
+ - type: accuracy
23
+ value: 0.907
24
+ name: Accuracy
25
+ verified: true
26
+ - type: f1
27
+ value: 0.903
28
+ name: F1-score
29
+ verified: true
30
+ - type: precision
31
+ value: 0.901
32
+ name: Precision
33
+ verified: true
34
+ - type: recall
35
+ value: 0.907
36
+ name: Recall
37
+ verified: true
38
  ---
39
 
40
  ## Introduction
41
 
42
 
43
+ Tupy-BERT-Large-Multilabel is a fine-tuned BERT model designed specifically for multilabel classification of hate speech in Portuguese.
44
+ Derived from the [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased),
45
+ TuPy-Large is a refined solution for addressing categorical hate speech concerns (ageism, aporophobia, body shame, capacitism, LGBTphobia, political,
46
+ racism, religious intolerance, misogyny, and xenophobia).
47
  For more details or specific inquiries, please refer to the [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/).
48
 
49
+ The efficacy of Language Models can exhibit notable variations when confronted with a shift in domain between training and test data.
50
+ In the creation of a specialized Portuguese Language Model tailored for hate speech classification,
51
+ the original BERTimbau model underwent fine-tuning processe carried out on
52
+ the [TuPy Hate Speech DataSet](https://huggingface.co/datasets/Silly-Machine/TuPyE-Dataset), sourced from diverse social networks.
53
 
54
  ## Available models
55
 
 
60
  | `Silly-Machine/TuPy-Bert-Base-Multilabel` | BERT-Base | 12 | 109M |
61
  | `Silly-Machine/TuPy-Bert-Large-Multilabel` | BERT-Large | 24 | 334M |
62
 
63
+ ## Example usage
64
 
65
  ```python
66
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
 
92
  model_name = "Silly-Machine/TuPy-Bert-Large-Multilabel"
93
  text = "Bom dia, flor do dia!!"
94
  classify_hate_speech(model_name, text)
 
95
  ```