|
import os.path |
|
import sys |
|
|
|
base_dir = '..' |
|
sys.path.append(base_dir) |
|
|
|
from Trainer import Trainer |
|
from TranslatorTrainer import TranslatorTrainer |
|
from dataset import GridDataset, CharMap |
|
|
|
|
|
WORD_TOKENIZE = False |
|
|
|
PHONEME_FILTER_PREV = False |
|
BEAM_SIZE = 0 |
|
|
|
|
|
|
|
lipnet_weights = 'saved-weights/phonemes-231207-2130/I283000-L00683-W01012-C00765.pt' |
|
|
|
if WORD_TOKENIZE: |
|
translator_weights = 'saved-weights/translate-231204-1652/I160-L00047-W00000.pt' |
|
else: |
|
translator_weights = 'saved-weights/translate-231204-2227/I860-L00000-W00000.pt' |
|
|
|
|
|
|
|
lipnet_predictor = Trainer( |
|
write_logs=False, base_dir=base_dir, |
|
num_workers=0, char_map=CharMap.phonemes |
|
) |
|
lipnet_predictor.load_weights(lipnet_weights) |
|
lipnet_predictor.load_datasets() |
|
dataset = lipnet_predictor.test_dataset |
|
|
|
phoneme_translator = TranslatorTrainer( |
|
write_logs=False, base_dir=base_dir, word_tokenize=WORD_TOKENIZE |
|
) |
|
phoneme_translator.load_weights(os.path.join( |
|
base_dir, translator_weights |
|
)) |
|
|
|
""" |
|
new_phonemes = GridDataset.text_to_phonemes("Do you like fries") |
|
print("PRE_REV_TRANSLATE", [new_phonemes]) |
|
pred_text = phoneme_translator.translate(new_phonemes) |
|
print("AFT_REV_TRANSLATE", pred_text) |
|
|
|
phoneme_sentence = 'B-IH1-N B-L-UW1 AE1-T EH1-F TH-R-IY1 S-UW1-N' |
|
pred_text = phoneme_translator.translate(phoneme_sentence) |
|
print(f'PRED_TEXT: [{pred_text}]') |
|
""" |
|
|
|
total_samples = 1000 |
|
total_wer = 0 |
|
num_correct = 0 |
|
num_phonemes_correct = 0 |
|
|
|
for k in range(total_samples): |
|
sample = dataset.load_random_sample(char_map=all) |
|
tgt_phonemes = sample['phonemes'] |
|
tgt_text = sample['txt'] |
|
|
|
target_phonemes_sentence = dataset.ctc_arr2txt( |
|
tgt_phonemes, start=1, char_map=CharMap.phonemes, |
|
filter_previous=PHONEME_FILTER_PREV |
|
) |
|
target_sentence = dataset.ctc_arr2txt( |
|
tgt_text, start=1, char_map=CharMap.letters, |
|
filter_previous=False |
|
) |
|
|
|
pred_phonemes_sentence = lipnet_predictor.predict_sample(sample)[0] |
|
pred_text = phoneme_translator.translate( |
|
pred_phonemes_sentence, beam_size=BEAM_SIZE |
|
) |
|
match_phonemes = pred_phonemes_sentence == target_phonemes_sentence |
|
wer = dataset.get_wer( |
|
[pred_text], [target_sentence], char_map=CharMap.letters |
|
)[0] |
|
|
|
total_wer += wer |
|
|
|
correct = False |
|
if pred_text == target_sentence: |
|
correct = True |
|
num_correct += 1 |
|
if pred_phonemes_sentence == target_phonemes_sentence: |
|
num_phonemes_correct += 1 |
|
|
|
print( |
|
f'PRED-PHONEMES [{k}]', |
|
[pred_phonemes_sentence, target_phonemes_sentence], |
|
[pred_text, target_sentence], correct, wer |
|
) |
|
|
|
avg_wer = total_wer / total_samples |
|
print(f'{num_correct}/{total_samples} samples correct') |
|
print(f'{num_phonemes_correct}/{total_samples} phoneme samples correct') |
|
print(f'average WER: {avg_wer}') |