File size: 10,935 Bytes
df07554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import yaml
import options as opt

from typing import List, Tuple
from dataset import GridDataset, CharMap, Datasets
from tqdm.auto import tqdm
from helpers import *


class GridLoader(object):
    def __init__(self, base_dir=''):
        self.video_dir = os.path.join(base_dir, opt.video_dir)
        self.alignment_dir = os.path.join(base_dir, opt.alignments_dir)
        self.phonemes_dir = os.path.join(base_dir, opt.phonemes_dir)
        self.images_dir = os.path.join(base_dir, opt.images_dir)
        self.usable_video_filepaths = None

    def load_video_paths(
        self, verbose=False, blacklist=frozenset({}),
        ext='mpg', fetch_all_paths=False, excluded_speakers=None,
        verify_phonemes_length=False
    ) -> List[str]:
        """
        :param fetch_all_paths:
        :param verbose:
        whether to show logs
        (currently displays numbers of videos with alignment loaded)
        :param blacklist:
        set of filepaths to exclude from training
        :param ext: video file extension
        :param excluded_speakers:
        :param verify_phonemes_length:
        :return:
        """
        if excluded_speakers is None:
            excluded_speakers = set()

        assert ext in ('mpg', 'mp4')
        usable_video_filepaths = []
        videos_without_alignment = []
        all_video_filepaths = []
        ctc_exclusions = 0

        for speaker_no in range(1, 35):
            speaker_dirname = f's{speaker_no}'
            speaker_dir = os.path.join(self.video_dir, speaker_dirname)
            if speaker_no in excluded_speakers:
                if verbose:
                    print(f'SKIPPING SPEAKER NO {speaker_no}')

                continue

            if not os.path.exists(speaker_dir):
                # speaker does not exist (its just s21 right now)
                continue

            video_filenames = os.listdir(speaker_dir)

            for video_filename in video_filenames:
                if not video_filename.endswith(f'.{ext}'):
                    continue

                # get name of file without the extension
                base_name = os.path.splitext(video_filename)[0]
                images_dir = os.path.join(
                    self.images_dir, speaker_dirname, base_name
                )
                video_path = os.path.join(
                    self.video_dir, speaker_dirname, f'{base_name}.{ext}'
                )

                if video_path in blacklist:
                    continue

                if verify_phonemes_length:
                    extractable, ctc_invalid = self.is_phoneme_extractable(
                        speaker_no, base_name, images_dir=images_dir,
                        verbose=verbose
                    )

                    if ctc_invalid:
                        ctc_exclusions += 1
                    if not extractable:
                        continue

        if verbose:
            num_usable_videos = len(usable_video_filepaths)
            num_unusable_videos = len(videos_without_alignment)
            # print(videos_without_alignment)

            print(f'videos with alignment: {num_usable_videos}')
            print(f'videos without alignment: {num_unusable_videos}')
            print(f'CTC EXCLUSIONS: {ctc_exclusions}')

        self.usable_video_filepaths = usable_video_filepaths

        if fetch_all_paths:
            return all_video_filepaths
        else:
            return usable_video_filepaths

    def is_phoneme_extractable(
        self, speaker_no, base_name, images_dir,
        verbose=False
    ) -> Tuple[bool, bool]:
        """
        :param speaker_no:
        :param base_name:
        :param images_dir:
        :param verbose:
        :return:
        two boolean values:
        the first whether the video is suitable
        to be included in the dataset for phoneme prediction
        the second bool determines whether the extracted images
        and phonemes length corresponding to the video satisfies
        CTC loss constraints (video / input length must be more
        than twice the length of phoneme sequence / output)
        """
        speaker_dirname = f's{speaker_no}'
        phonemes_path = os.path.join(
            self.phonemes_dir, speaker_dirname,
            f'{base_name}.align'
        )

        if not os.path.exists(images_dir):
            # no images extracted for this video
            # probably means annotation unavailable also
            return False, False

        try:
            phonemes = GridDataset.load_sentence(
                phonemes_path, CharMap.phonemes
            )
        except FileNotFoundError:
            # phoneme sequence unavailable for video
            return False, False

        image_names = [
            filename for filename in os.listdir(images_dir)
            if filename.endswith('.jpg')
        ]

        vid_len = len(image_names)
        num_phonemes = len(phonemes)

        if vid_len <= num_phonemes * 2:
            """
            if video length is less than number of phonemes
            then the CTCLoss will return nan, therefore we
            exclude videos that would cause this
            """
            if verbose:
                print(f'CTC EXCLUDE: {speaker_no, base_name}')
                print(images_dir, vid_len, num_phonemes)

            return False, True

        return True, False

    def get_grid_sentence_pairs(
        self, excluded_speakers, ext='mpg', verbose=False
    ) -> List[Tuple[int, str]]:
        speaker_sentence_pairs = []

        for speaker_no in range(1, 35):
            speaker_dirname = f's{speaker_no}'
            speaker_dir = os.path.join(self.video_dir, speaker_dirname)

            if speaker_no in excluded_speakers:
                if verbose:
                    print(f'SKIPPING SPEAKER NO {speaker_no}')

                continue

            if not os.path.exists(speaker_dir):
                # speaker does not exist (its just s21 right now)
                continue

            video_filenames = os.listdir(speaker_dir)
            for video_filename in video_filenames:
                if not video_filename.endswith(f'.{ext}'):
                    continue

                # get name of file without the extension
                base_name = os.path.splitext(video_filename)[0]
                speaker_sentence_pairs.append((speaker_no, base_name))

        return speaker_sentence_pairs

    def get_lsr2_sentence_pairs(self, ext='mp4') -> List[Tuple[str, str]]:
        sentence_pairs = []

        group_dirnames = os.listdir(self.video_dir)
        for group_dirname in group_dirnames:
            group_dir = os.path.join(self.video_dir, group_dirname)

            if not os.path.exists(group_dir):
                continue

            video_filenames = os.listdir(group_dirname)
            for video_filename in video_filenames:
                if not video_filename.endswith(f'.{ext}'):
                    continue

                # get name of file without the extension
                base_name = os.path.splitext(video_filename)[0]
                sentence_pairs.append((group_dir, base_name))

        return sentence_pairs

    def load_lsr2_phonemes_text_map(
        self, phonemes_char_map: CharMap = CharMap.cmu_phonemes,
        text_char_map: CharMap = CharMap.lsr2_text,
        ext='mp4', verbose=False,
    ):
        phoneme_map, text_map = {}, {}
        assert ext in ('mpg', 'mp4')
        unique_words = set()

        sentence_pairs = self.get_lsr2_sentence_pairs(ext=ext)
        pbar = tqdm(sentence_pairs)

        for sentence_pair in pbar:
            group_dir, base_name = sentence_pair

            phonemes_path = os.path.join(
                self.phonemes_dir, group_dir,
                f'{base_name}.txt'
            )
            alignments_path = os.path.join(
                self.alignment_dir, group_dir,
                f'{base_name}.txt'
            )

            try:
                phonemes_sentence = GridDataset.load_str_sentence(
                    phonemes_path, char_map=phonemes_char_map
                )
                letters_sentence = GridDataset.load_str_sentence(
                    alignments_path, char_map=text_char_map
                )
            except FileNotFoundError:
                continue

            words = letters_sentence.split(' ')
            for word in words:
                unique_words.add(word)

            phoneme_map[sentence_pair] = phonemes_sentence
            text_map[sentence_pair] = letters_sentence
            # print("TEXT", text)
            # print("PHONEMES", phonemes)

        if verbose:
            print('UNIQUE_WORDS', len(unique_words))

        phonemes_text_map = {
            phonemes_char_map: phoneme_map,
            text_char_map: text_map
        }
        return phonemes_text_map

    def load_grid_phonemes_text_map(
        self, phonemes_char_map: CharMap = CharMap.phonemes,
        text_char_map: CharMap = CharMap.letters,
        excluded_speakers=None, verbose=False, ext='mpg'
    ):
        if excluded_speakers is None:
            excluded_speakers = set()

        phoneme_map, text_map = {}, {}
        assert ext in ('mpg', 'mp4')
        unique_words = set()

        speaker_sentence_pairs = self.get_grid_sentence_pairs(
            ext=ext, excluded_speakers=excluded_speakers,
            verbose=verbose
        )

        pbar = tqdm(speaker_sentence_pairs)
        for speaker_sentence_pair in pbar:
            speaker_no, base_name = speaker_sentence_pair
            speaker_dirname = f's{speaker_no}'

            phonemes_path = os.path.join(
                self.phonemes_dir, speaker_dirname,
                f'{base_name}.align'
            )
            alignments_path = os.path.join(
                self.alignment_dir, speaker_dirname,
                f'{base_name}.align'
            )

            try:
                phonemes_sentence = GridDataset.load_str_sentence(
                    phonemes_path, char_map=phonemes_char_map
                )
                letters_sentence = GridDataset.load_str_sentence(
                    alignments_path, char_map=text_char_map
                )
            except FileNotFoundError:
                continue

            words = letters_sentence.split(' ')
            for word in words:
                unique_words.add(word)

            phoneme_map[speaker_sentence_pair] = phonemes_sentence
            text_map[speaker_sentence_pair] = letters_sentence
            # print("TEXT", text)
            # print("PHONEMES", phonemes)

        if verbose:
            print('UNIQUE_WORDS', len(unique_words))

        phonemes_text_map = {
            phonemes_char_map: phoneme_map,
            text_char_map: text_map
        }
        return phonemes_text_map


if __name__ == '__main__':
    loader = GridLoader()
    loader.load_video_paths(True)