File size: 10,935 Bytes
df07554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import os
import yaml
import options as opt
from typing import List, Tuple
from dataset import GridDataset, CharMap, Datasets
from tqdm.auto import tqdm
from helpers import *
class GridLoader(object):
def __init__(self, base_dir=''):
self.video_dir = os.path.join(base_dir, opt.video_dir)
self.alignment_dir = os.path.join(base_dir, opt.alignments_dir)
self.phonemes_dir = os.path.join(base_dir, opt.phonemes_dir)
self.images_dir = os.path.join(base_dir, opt.images_dir)
self.usable_video_filepaths = None
def load_video_paths(
self, verbose=False, blacklist=frozenset({}),
ext='mpg', fetch_all_paths=False, excluded_speakers=None,
verify_phonemes_length=False
) -> List[str]:
"""
:param fetch_all_paths:
:param verbose:
whether to show logs
(currently displays numbers of videos with alignment loaded)
:param blacklist:
set of filepaths to exclude from training
:param ext: video file extension
:param excluded_speakers:
:param verify_phonemes_length:
:return:
"""
if excluded_speakers is None:
excluded_speakers = set()
assert ext in ('mpg', 'mp4')
usable_video_filepaths = []
videos_without_alignment = []
all_video_filepaths = []
ctc_exclusions = 0
for speaker_no in range(1, 35):
speaker_dirname = f's{speaker_no}'
speaker_dir = os.path.join(self.video_dir, speaker_dirname)
if speaker_no in excluded_speakers:
if verbose:
print(f'SKIPPING SPEAKER NO {speaker_no}')
continue
if not os.path.exists(speaker_dir):
# speaker does not exist (its just s21 right now)
continue
video_filenames = os.listdir(speaker_dir)
for video_filename in video_filenames:
if not video_filename.endswith(f'.{ext}'):
continue
# get name of file without the extension
base_name = os.path.splitext(video_filename)[0]
images_dir = os.path.join(
self.images_dir, speaker_dirname, base_name
)
video_path = os.path.join(
self.video_dir, speaker_dirname, f'{base_name}.{ext}'
)
if video_path in blacklist:
continue
if verify_phonemes_length:
extractable, ctc_invalid = self.is_phoneme_extractable(
speaker_no, base_name, images_dir=images_dir,
verbose=verbose
)
if ctc_invalid:
ctc_exclusions += 1
if not extractable:
continue
if verbose:
num_usable_videos = len(usable_video_filepaths)
num_unusable_videos = len(videos_without_alignment)
# print(videos_without_alignment)
print(f'videos with alignment: {num_usable_videos}')
print(f'videos without alignment: {num_unusable_videos}')
print(f'CTC EXCLUSIONS: {ctc_exclusions}')
self.usable_video_filepaths = usable_video_filepaths
if fetch_all_paths:
return all_video_filepaths
else:
return usable_video_filepaths
def is_phoneme_extractable(
self, speaker_no, base_name, images_dir,
verbose=False
) -> Tuple[bool, bool]:
"""
:param speaker_no:
:param base_name:
:param images_dir:
:param verbose:
:return:
two boolean values:
the first whether the video is suitable
to be included in the dataset for phoneme prediction
the second bool determines whether the extracted images
and phonemes length corresponding to the video satisfies
CTC loss constraints (video / input length must be more
than twice the length of phoneme sequence / output)
"""
speaker_dirname = f's{speaker_no}'
phonemes_path = os.path.join(
self.phonemes_dir, speaker_dirname,
f'{base_name}.align'
)
if not os.path.exists(images_dir):
# no images extracted for this video
# probably means annotation unavailable also
return False, False
try:
phonemes = GridDataset.load_sentence(
phonemes_path, CharMap.phonemes
)
except FileNotFoundError:
# phoneme sequence unavailable for video
return False, False
image_names = [
filename for filename in os.listdir(images_dir)
if filename.endswith('.jpg')
]
vid_len = len(image_names)
num_phonemes = len(phonemes)
if vid_len <= num_phonemes * 2:
"""
if video length is less than number of phonemes
then the CTCLoss will return nan, therefore we
exclude videos that would cause this
"""
if verbose:
print(f'CTC EXCLUDE: {speaker_no, base_name}')
print(images_dir, vid_len, num_phonemes)
return False, True
return True, False
def get_grid_sentence_pairs(
self, excluded_speakers, ext='mpg', verbose=False
) -> List[Tuple[int, str]]:
speaker_sentence_pairs = []
for speaker_no in range(1, 35):
speaker_dirname = f's{speaker_no}'
speaker_dir = os.path.join(self.video_dir, speaker_dirname)
if speaker_no in excluded_speakers:
if verbose:
print(f'SKIPPING SPEAKER NO {speaker_no}')
continue
if not os.path.exists(speaker_dir):
# speaker does not exist (its just s21 right now)
continue
video_filenames = os.listdir(speaker_dir)
for video_filename in video_filenames:
if not video_filename.endswith(f'.{ext}'):
continue
# get name of file without the extension
base_name = os.path.splitext(video_filename)[0]
speaker_sentence_pairs.append((speaker_no, base_name))
return speaker_sentence_pairs
def get_lsr2_sentence_pairs(self, ext='mp4') -> List[Tuple[str, str]]:
sentence_pairs = []
group_dirnames = os.listdir(self.video_dir)
for group_dirname in group_dirnames:
group_dir = os.path.join(self.video_dir, group_dirname)
if not os.path.exists(group_dir):
continue
video_filenames = os.listdir(group_dirname)
for video_filename in video_filenames:
if not video_filename.endswith(f'.{ext}'):
continue
# get name of file without the extension
base_name = os.path.splitext(video_filename)[0]
sentence_pairs.append((group_dir, base_name))
return sentence_pairs
def load_lsr2_phonemes_text_map(
self, phonemes_char_map: CharMap = CharMap.cmu_phonemes,
text_char_map: CharMap = CharMap.lsr2_text,
ext='mp4', verbose=False,
):
phoneme_map, text_map = {}, {}
assert ext in ('mpg', 'mp4')
unique_words = set()
sentence_pairs = self.get_lsr2_sentence_pairs(ext=ext)
pbar = tqdm(sentence_pairs)
for sentence_pair in pbar:
group_dir, base_name = sentence_pair
phonemes_path = os.path.join(
self.phonemes_dir, group_dir,
f'{base_name}.txt'
)
alignments_path = os.path.join(
self.alignment_dir, group_dir,
f'{base_name}.txt'
)
try:
phonemes_sentence = GridDataset.load_str_sentence(
phonemes_path, char_map=phonemes_char_map
)
letters_sentence = GridDataset.load_str_sentence(
alignments_path, char_map=text_char_map
)
except FileNotFoundError:
continue
words = letters_sentence.split(' ')
for word in words:
unique_words.add(word)
phoneme_map[sentence_pair] = phonemes_sentence
text_map[sentence_pair] = letters_sentence
# print("TEXT", text)
# print("PHONEMES", phonemes)
if verbose:
print('UNIQUE_WORDS', len(unique_words))
phonemes_text_map = {
phonemes_char_map: phoneme_map,
text_char_map: text_map
}
return phonemes_text_map
def load_grid_phonemes_text_map(
self, phonemes_char_map: CharMap = CharMap.phonemes,
text_char_map: CharMap = CharMap.letters,
excluded_speakers=None, verbose=False, ext='mpg'
):
if excluded_speakers is None:
excluded_speakers = set()
phoneme_map, text_map = {}, {}
assert ext in ('mpg', 'mp4')
unique_words = set()
speaker_sentence_pairs = self.get_grid_sentence_pairs(
ext=ext, excluded_speakers=excluded_speakers,
verbose=verbose
)
pbar = tqdm(speaker_sentence_pairs)
for speaker_sentence_pair in pbar:
speaker_no, base_name = speaker_sentence_pair
speaker_dirname = f's{speaker_no}'
phonemes_path = os.path.join(
self.phonemes_dir, speaker_dirname,
f'{base_name}.align'
)
alignments_path = os.path.join(
self.alignment_dir, speaker_dirname,
f'{base_name}.align'
)
try:
phonemes_sentence = GridDataset.load_str_sentence(
phonemes_path, char_map=phonemes_char_map
)
letters_sentence = GridDataset.load_str_sentence(
alignments_path, char_map=text_char_map
)
except FileNotFoundError:
continue
words = letters_sentence.split(' ')
for word in words:
unique_words.add(word)
phoneme_map[speaker_sentence_pair] = phonemes_sentence
text_map[speaker_sentence_pair] = letters_sentence
# print("TEXT", text)
# print("PHONEMES", phonemes)
if verbose:
print('UNIQUE_WORDS', len(unique_words))
phonemes_text_map = {
phonemes_char_map: phoneme_map,
text_char_map: text_map
}
return phonemes_text_map
if __name__ == '__main__':
loader = GridLoader()
loader.load_video_paths(True) |