File size: 23,428 Bytes
df07554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
# encoding: utf-8
import numpy as np
import glob
import time
import cv2
import yaml
import os
import torch
import glob
import re
import string
import copy
import json
import random
import enum
import editdistance
import pronouncing
from torch.utils.data import Dataset
import Extractor
import options
from cvtransforms import *
from typing import List, Iterable
from helpers import *
class CharMap(str, enum.Enum):
letters = 'letters'
lsr2_text = 'lsr2_text'
phonemes = 'phonemes'
cmu_phonemes = 'cmu_phonemes'
visemes = 'visemes'
class Datasets(str, enum.Enum):
GRID = 'GRID'
LRS2 = 'LRS2'
class GridDataset(Dataset):
letters = [
' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
]
lrs2_chars = [
' ', "'", '0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
'V', 'W', 'X', 'Y', 'Z'
]
# phonemes used by the lipnet dataset
phonemes = [
' ', 'AE1', 'AO1', 'D', 'JH', 'Y', 'P', 'AH0', 'OW1', 'G',
'AY1', 'TH', 'IY1', 'CH', 'T', 'AW1', 'F', 'AH1', 'Z',
'R', 'EH1', 'UW1', 'M', 'B', 'W', 'V', 'DH', 'K', 'IH0',
'AA1', 'IH1', 'S', 'EY1', 'N', 'OW0', 'L'
]
# full set of phonemes in the CMU phoneme corpus
cmu_phonemes = [
' ', '#', 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1',
'AE2', 'AH', 'AH0', 'AH1', 'AH2', 'AO', 'AO0', 'AO1', 'AO2',
'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER',
'ER0', 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G',
'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2',
'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2',
'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH',
'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V',
'W', 'Y', 'Z', 'ZH'
]
phoneme_chars = map_phonemes(phonemes)
cmu_phoneme_chars = map_phonemes(cmu_phonemes)
def __init__(
self, video_path, alignments_dir,
phonemes_dir, file_list, vid_pad,
image_dir, txt_pad, phase, shared_dict=None,
char_map=CharMap.letters, base_dir='',
frame_doubling=False, sample_all_props=False
):
self.base_dir = base_dir
self.sample_all_props = sample_all_props
self.image_dir = os.path.join(base_dir, image_dir)
self.alignments_dir = os.path.join(base_dir, alignments_dir)
self.phonemes_dir = os.path.join(base_dir, phonemes_dir)
self.frame_doubling = frame_doubling
if type(file_list) is str:
file_list = os.path.join(base_dir, file_list)
# print('FILE_LIST', file_list, base_dir)
file_list = open(file_list, 'r').readlines()
self.shared_dict = shared_dict
self.char_map = char_map
self.vid_pad = vid_pad
self.txt_pad = txt_pad
self.phase = phase
self.videos = [
os.path.join(video_path, line.strip())
for line in file_list
]
self.data = []
for vid in self.videos:
items = vid.split(os.path.sep)
if len(items) < 2:
print('BAD VID ITEM', items)
raise ValueError
speaker_name, filename = items[-2], items[-1]
self.data.append((vid, speaker_name, filename))
def _fetch_anno_path(self, spk, basename):
return self.fetch_anno_path(
spk=spk, basename=basename, char_map=self.char_map
)
@classmethod
def text_to_phonemes(
cls, text, as_str=True, char_map=CharMap.phonemes
):
sentence_phonemes = []
words = text.upper().strip().split(' ')
for word in words:
word_phonemes = pronouncing.phones_for_word(word)[0]
word_phonemes = word_phonemes.split(' ')
sentence_phonemes.extend(word_phonemes)
sentence_phonemes.append(' ')
if sentence_phonemes[-1] == ' ':
sentence_phonemes = sentence_phonemes[:-1]
if as_str:
return cls.stringify(sentence_phonemes, char_map=char_map)
else:
return sentence_phonemes
def fetch_anno_path(self, spk, basename, char_map):
if char_map == CharMap.letters:
align_path_name = os.path.join(
self.alignments_dir, spk, basename + '.align'
)
return align_path_name
elif char_map == CharMap.lsr2_text:
align_path_name = os.path.join(
self.alignments_dir, spk, basename + '.txt'
)
return align_path_name
elif char_map == CharMap.phonemes:
phonemes_path_name = os.path.join(
self.phonemes_dir, spk, basename + '.align'
)
return phonemes_path_name
elif char_map == CharMap.cmu_phonemes:
phonemes_path_name = os.path.join(
self.phonemes_dir, spk, basename + '.txt'
)
return phonemes_path_name
else:
raise NotImplementedError
def fetch_anno_text(self, spk, basename, char_map: CharMap):
return self.load_anno_text(self.fetch_anno_path(
spk, basename, char_map=char_map
), char_map=char_map)
def __getitem__(self, idx):
(vid, spk, name) = self.data[idx]
return self.load_sample(
video_name=vid, speaker_name=spk,
filename=name
)
def load_random_sample(self, char_map=None):
(vid, spk, name) = random.choice(self.data)
return self.load_sample(
video_name=vid, speaker_name=spk,
filename=name, char_map=char_map
)
def load_sample(
self, video_name, speaker_name, filename,
char_map=None
):
if char_map is None:
char_map = self.char_map
if self.sample_all_props:
char_map = all
vid = self.load_vid(video_name)
if self.frame_doubling:
vid = np.repeat(vid, repeats=2, axis=0)
basename, _ = os.path.splitext(filename)
# print('SPK_NAME', (spk, name, anno_path))
txt_results, phoneme_results = {}, {}
cmu_phoneme_results = {}
if (char_map is all) or (char_map == CharMap.letters):
txt_anno, txt_anno_arr = self.fetch_anno_text(
speaker_name, basename, char_map=CharMap.letters
)
txt_anno_arr_len = txt_anno_arr.shape[0]
txt_anno_arr = self._padding(txt_anno_arr, self.txt_pad)
assert not np.isnan(txt_anno_arr).any()
txt_anno += [' '] * (options.txt_padding - len(txt_anno))
txt_results = kwargify(
txt=torch.LongTensor(txt_anno_arr),
txt_len=txt_anno_arr_len, txt_anno=txt_anno
)
if (char_map is all) or (char_map == CharMap.phonemes):
phoneme_anno, phoneme_anno_arr = self.fetch_anno_text(
speaker_name, basename, char_map=CharMap.phonemes
)
phoneme_anno_arr_len = phoneme_anno_arr.shape[0]
phoneme_anno_arr = self._padding(
phoneme_anno_arr, self.txt_pad
)
assert not np.isnan(phoneme_anno_arr_len).any()
phoneme_results = kwargify(
phonemes=torch.LongTensor(phoneme_anno_arr),
phonemes_len=phoneme_anno_arr_len,
)
elif (char_map is all) or (char_map == CharMap.cmu_phonemes):
phoneme_anno, phoneme_anno_arr = self.fetch_anno_text(
speaker_name, basename, char_map=CharMap.cmu_phonemes
)
phoneme_anno_arr_len = phoneme_anno_arr.shape[0]
phoneme_anno_arr = self._padding(
phoneme_anno_arr, self.txt_pad
)
assert not np.isnan(phoneme_anno_arr_len).any()
cmu_phoneme_results = kwargify(
cmu_phonemes=torch.LongTensor(phoneme_anno_arr),
cmu_phonemes_len=phoneme_anno_arr_len,
)
if self.phase == 'train':
vid = HorizontalFlip(vid)
vid = ColorNormalize(vid)
vid_len = vid.shape[0]
vid = self._padding(vid, self.vid_pad)
"""
if vid_len <= anno_len * 2:
raise ValueError(f'CTC INVALID: {self.data[idx]}')
"""
assert not np.isnan(vid).any()
return kwargify(
vid=torch.FloatTensor(vid.transpose(3, 0, 1, 2)),
vid_len=vid_len, **txt_results, **phoneme_results,
**cmu_phoneme_results
)
def __len__(self):
return len(self.data)
@staticmethod
def serialize(data: np.ndarray):
return torch.from_numpy(data.astype(np.uint8))
@staticmethod
def deserialize(data: torch.Tensor):
return data.numpy().astype(np.float16)
@staticmethod
def process_vid(video_path: str, to_tensor=True):
frames = Extractor.extract_frames(
video_path, recycle_landmarks=True, use_gpu=True
)
frames = [f for f in frames if f is not None]
array = list(filter(lambda im: im is not None, frames))
array = [
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
for im in array
]
array = np.stack(array, axis=0).astype(np.float16)
vid = ColorNormalize(array)
if to_tensor:
vid = torch.FloatTensor(vid.transpose(3, 0, 1, 2))
return vid
def load_vid(self, video_path: str) -> np.ndarray:
return self._load_vid(video_path, cache=False)
def _load_vid(self, video_path: str, cache=True) -> np.ndarray:
if cache and self.shared_dict is not None:
if video_path in self.shared_dict:
return self.deserialize(
self.shared_dict[video_path]
)
# print('LOAD_DIR', video_path)
base_filename = os.path.basename(video_path)
basename, _ = os.path.splitext(base_filename)
speaker_dir = os.path.basename(os.path.dirname(video_path))
image_dir = f'{self.image_dir}/{speaker_dir}/{basename}'
files = os.listdir(image_dir)
files = list(filter(lambda file: file.find('.jpg') != -1, files))
files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
array = [cv2.imread(os.path.join(image_dir, file)) for file in files]
array = list(filter(lambda im: im is not None, array))
array = [
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
for im in array
]
try:
array = np.stack(array, axis=0).astype(np.float16)
except ValueError as e:
print(f'BAD VIDEO PATH: {video_path}')
raise e
if cache and self.shared_dict is not None:
# print('SD >>')
serialized_data = self.serialize(array)
serialized_data.share_memory_()
self.shared_dict[video_path] = serialized_data
# print('SD <<')
return array
@classmethod
def load_anno(cls, name, char_map):
return cls.load_anno_text(name, char_map)[1]
@classmethod
def load_anno_text(cls, name, char_map):
# print('ANNOTATION_NAME', name)
txt = cls.load_sentence(name, char_map=char_map)
indices = cls.txt2arr(txt, 1, char_map=char_map)
# print('TXT', txt)
return txt, indices
def _load_anno(self, name):
return self.load_anno(name, self.char_map)
@classmethod
def load_sentence(cls, name, char_map=CharMap.letters) -> List[str]:
with open(name, 'r') as f:
if char_map == CharMap.letters:
lines = [line.strip().split(' ') for line in f.readlines()]
txt = [line[2] for line in lines]
txt = list(filter(
lambda s: not s.upper() in ['SIL', 'SP'], txt
))
all_chars = list(' '.join(txt))
all_chars = [char.upper() for char in all_chars]
return all_chars
elif char_map == CharMap.lsr2_text:
text_line = f.readlines()[0]
text_line = text_line[5:].strip()
all_chars = [char.upper() for char in text_line]
return all_chars
elif char_map in (CharMap.phonemes, CharMap.cmu_phonemes):
all_chars = []
for line in f.readlines():
word_phonemes = line.strip().split(' ')
all_chars.extend(word_phonemes)
all_chars.append(' ')
if all_chars[-1] == ' ':
all_chars = all_chars[:-1]
return all_chars
else:
raise ValueError(f'BAD CHAR MAP {char_map}')
@classmethod
def load_str_sentence(cls, name, char_map=CharMap.letters) -> str:
chars_seq = cls.load_sentence(name=name, char_map=char_map)
return cls.stringify(chars_seq, char_map=char_map)
@staticmethod
def tokenize_text(text: str, word_tokenize=False) -> List[str]:
"""
:param text:
:param word_tokenize:
whether to tokenize into words or individual characters
:return:
"""
if word_tokenize:
return text.split(' ')
else:
return list(text)
@staticmethod
def tokenize_phonemes(text: str, word_tokenize=False) -> List[str]:
"""
:param text:
:param word_tokenize:
whether to tokenize into words or individual phonemes
example:
text = 'S-EH1-T G-R-IY1-N IH0-N EH1-L S-IH1-K-S AH0-G-EH1-N'
word-level tokens:
['S-EH1-T', 'G-R-IY1-N', 'IH0-N', 'EH1-L', 'S-IH1-K-S', 'AH0-G-EH1-N']
phoneme-level tokens:
['S', 'EH1', 'T', ' ', 'G', 'R', 'IY1', 'N', ' ', 'IH0',
'N', ' ', 'EH1', 'L', ' ', 'S', 'IH1', 'K', 'S', ' ',
'AH0', 'G', 'EH1', 'N']
:return:
"""
if word_tokenize:
return text.split(' ')
else:
words = text.split(' ')
phonemes = []
for word in words:
assert not word.startswith('-')
assert not word.endswith('-')
phonemes.extend(word.split('-'))
phonemes.append(' ')
if phonemes[-1] == ' ':
phonemes = phonemes[:-1]
return phonemes
@staticmethod
def _padding(array, length):
array = [array[_] for _ in range(array.shape[0])]
size = array[0].shape
for i in range(length - len(array)):
array.append(np.zeros(size))
return np.stack(array, axis=0)
@classmethod
def txt2arr(cls, txt, start, char_map=CharMap.letters):
arr = []
if char_map == CharMap.letters:
for char in list(txt):
arr.append(cls.letters.index(char) + start)
elif char_map == CharMap.phonemes:
# print('TXT', txt)
for phoneme in txt:
arr.append(cls.phonemes.index(phoneme) + start)
elif char_map == CharMap.cmu_phonemes:
# print('TXT', txt)
for phoneme in txt:
arr.append(cls.cmu_phonemes.index(phoneme) + start)
elif char_map == CharMap.visemes:
raise NotImplementedError
else:
raise ValueError(f'BAD CHAR MAP: {char_map}')
return np.array(arr)
def arr2txt(self, arr, start, char_map=None):
char_map = self.char_map if char_map is None else char_map
return self._arr2txt(arr, start, char_map=char_map)
@classmethod
def _arr2txt(cls, arr, start, char_map=CharMap.letters):
txt = []
for n in arr:
if n >= start:
if char_map == CharMap.letters:
txt.append(cls.letters[n - start])
elif char_map == CharMap.phonemes:
txt.append(cls.phonemes[n - start])
elif char_map == CharMap.cmu_phonemes:
txt.append(cls.cmu_phonemes[n - start])
elif char_map == CharMap.visemes:
raise NotImplementedError
else:
raise ValueError(f'BAD CHAR MAP: {char_map}')
return cls.stringify(txt, char_map)
def get_char_mapping(self):
return self.char_mapping(self.char_map)
@classmethod
def char_mapping(cls, char_map):
if char_map == CharMap.letters:
return cls.letters
elif char_map == CharMap.phonemes:
return cls.phonemes
elif char_map == CharMap.cmu_phonemes:
return cls.cmu_phonemes
elif char_map == CharMap.visemes:
raise NotImplementedError
else:
raise ValueError(f'BAD CHAR MAP: {char_map}')
def ctc_decode(self, y):
y = y.argmax(-1)
return [
self.ctc_arr2txt(y[_], start=1)
for _ in range(y.size(0))
]
def ctc_decode_indices(self, y):
y = y.argmax(-1)
return [
self.ctc_arr2txt_indices(y[_], start=1)[1]
for _ in range(y.size(0))
]
def ctc_arr2txt(self, *args, **kwargs):
sentence, indices = self.ctc_arr2txt_pair(*args, **kwargs)
return sentence
def ctc_arr2txt_pair(
self, arr, start, char_map=None,
filter_previous=True
):
"""
converts token indices into a string sentence
:param arr:
array of token indices
:param start:
number of special characters in character set
:param char_map:
character set to use for tokenization
:param filter_previous:
if True, removes consecutive occurrences of an index / token
e.g. THREE becomes THRE, SOON becomes SON
:return:
"""
sentence, indices = self.ctc_arr2txt_indices(
arr=arr, start=start, char_map=char_map,
filter_previous=filter_previous
)
return sentence, indices
def ctc_arr2txt_indices(
self, arr, start, char_map=None,
filter_previous=True
):
"""
converts token indices into a string sentence
and indices of tokens taken along arr
:param arr:
array of token indices
:param start:
number of special characters in character set
:param char_map:
character set to use for tokenization
:param filter_previous:
if True, removes consecutive occurrences of an index / token
e.g. THREE becomes THRE, SOON becomes SON
:return:
"""
if char_map is None:
char_map = self.char_map
previous = -1
txt, indices = [], []
char_mapping = self.char_mapping(char_map)
for k, n in enumerate(arr):
check_consecutive = (
not filter_previous or previous != n
)
if n >= start:
has_empty_char = (
len(txt) > 0 and txt[-1] == ' ' and
char_mapping[n - start] == ' '
)
if not has_empty_char and check_consecutive:
txt.append(char_mapping[n - start])
indices.append(k)
previous = n
sentence = self.stringify(txt, char_map)
return sentence, indices
@staticmethod
def stringify(txt, char_map):
if char_map in (CharMap.letters, CharMap.lsr2_text):
return ''.join(txt).strip()
elif char_map in (CharMap.phonemes, CharMap.cmu_phonemes):
sentence = '-'.join(txt).strip()
sentence = sentence.replace('- ', ' ')
sentence = sentence.replace(' -', ' ')
if sentence.endswith('-'): sentence = sentence[:-1]
if sentence.startswith('-'): sentence = sentence[1:]
return sentence
else:
raise NotImplementedError
def _map_chars(self, chars: str):
return self.map_chars(chars, char_map=self.char_map)
@classmethod
def map_chars(cls, chars: str, char_map: CharMap):
# map a string containing multi-character
# phonemes like AE1 to a single character
if char_map == CharMap.letters:
return chars
elif char_map in (CharMap.phonemes, CharMap.cmu_phonemes):
if char_map == CharMap.phonemes:
phonemes_arr = cls.phonemes
char_phonemes_arr = cls.phonemes
elif char_map == CharMap.cmu_phonemes:
phonemes_arr = cls.cmu_phonemes
char_phonemes_arr = cls.cmu_phoneme_chars
else:
raise ValueError(f'BAD CHAR MAP {char_map}')
words = chars.split(' ')
char_phonemes = ''
for word in words:
phonemes = word.split('-')
phonemes = [
phoneme for phoneme in phonemes
if phoneme.strip() != ''
]
for phoneme in phonemes:
char_phonemes += char_phonemes_arr[
phonemes_arr.index(phoneme)
]
char_phonemes += ' '
return char_phonemes
elif char_map == CharMap.visemes:
raise NotImplementedError
else:
raise ValueError(f'BAD CHAR MAP: {char_map}')
@classmethod
def map_char_lists(
cls, char_lists: Iterable[str], char_map: CharMap
):
return [cls.map_chars(
char_seq, char_map=char_map
) for char_seq in char_lists]
def wer(self, raw_predict, raw_truth):
return self.get_wer(
raw_predict, raw_truth, char_map=self.char_map
)
@classmethod
def get_wer(cls, raw_predict, raw_truth, char_map: CharMap):
assert isinstance(raw_predict, Iterable)
assert isinstance(raw_truth, Iterable)
predict = cls.map_char_lists(raw_predict, char_map=char_map)
truth = cls.map_char_lists(raw_truth, char_map=char_map)
# print('WER', raw_truth, raw_predict)
word_pairs = [
(p[0].split(' '), p[1].split(' '))
for p in zip(predict, truth)
]
wer = [
1.0 * editdistance.eval(p[0], p[1])/len(p[1])
for p in word_pairs
]
return wer
def cer(self, raw_predict, raw_truth):
return self.get_cer(
raw_predict, raw_truth, char_map=self.char_map
)
@classmethod
def get_cer(cls, raw_predict, raw_truth, char_map: CharMap):
assert isinstance(raw_predict, Iterable)
assert isinstance(raw_truth, Iterable)
predict = cls.map_char_lists(raw_predict, char_map=char_map)
truth = cls.map_char_lists(raw_truth, char_map=char_map)
cer = [
1.0 * editdistance.eval(p[0], p[1]) / len(p[1])
for p in zip(predict, truth)
]
return cer
|