File size: 12,765 Bytes
df07554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import torch.nn as nn
import functools
import torch.optim as optim
import options as opt
import time
from helpers import *
from dataset import GridDataset, CharMap
from datetime import datetime as Datetime
from models.LipNet import LipNet
from tqdm.auto import tqdm
from PauseChecker import PauseChecker
from torch.utils.data import DataLoader
from torch.multiprocessing import Manager
from BaseTrainer import BaseTrainer
class Trainer(BaseTrainer):
def __init__(
self, name=opt.run_name, write_logs=True,
num_workers=None, base_dir='', char_map=opt.char_map,
pre_gru_repeats=None
):
super().__init__(name=name, base_dir=base_dir)
images_dir = opt.images_dir
if opt.use_lip_crops:
images_dir = opt.crop_images_dir
if num_workers is None:
num_workers = opt.num_workers
if pre_gru_repeats is None:
pre_gru_repeats = opt.pre_gru_repeats
assert pre_gru_repeats >= 1
assert isinstance(pre_gru_repeats, int)
self.images_dir = images_dir
self.num_workers = num_workers
self.pre_gru_repeats = pre_gru_repeats
self.char_map = char_map
manager = Manager()
if opt.cache_videos:
shared_dict = manager.dict()
else:
shared_dict = None
self.shared_dict = shared_dict
self.dataset_kwargs = self.get_dataset_kwargs(
shared_dict=shared_dict, base_dir=self.base_dir,
char_map=self.char_map
)
self.best_test_loss = float('inf')
self.train_dataset = None
self.test_dataset = None
self.model = None
self.net = None
if write_logs:
self.init_tensorboard()
def load_datasets(self):
if self.train_dataset is None:
self.train_dataset = GridDataset(
**self.dataset_kwargs, phase='train',
file_list=opt.train_list
)
if self.test_dataset is None:
self.test_dataset = GridDataset(
**self.dataset_kwargs, phase='test',
file_list=opt.val_list
)
def create_model(self):
output_classes = len(self.train_dataset.get_char_mapping())
if self.model is None:
self.model = LipNet(
output_classes=output_classes,
pre_gru_repeats=self.pre_gru_repeats
)
self.model = self.model.cuda()
if self.net is None:
self.net = nn.DataParallel(self.model).cuda()
def load_weights(self, weights_path):
self.load_datasets()
self.create_model()
weights_path = os.path.join(self.base_dir, weights_path)
pretrained_dict = torch.load(weights_path)
model_dict = self.model.state_dict()
pretrained_dict = {
k: v for k, v in pretrained_dict.items() if
k in model_dict.keys() and v.size() == model_dict[k].size()
}
missed_params = [
k for k, v in model_dict.items()
if k not in pretrained_dict.keys()
]
print('loaded params/tot params: {}/{}'.format(
len(pretrained_dict), len(model_dict)
))
print('miss matched params:{}'.format(missed_params))
model_dict.update(pretrained_dict)
self.model.load_state_dict(model_dict)
@staticmethod
def make_date_stamp():
return Datetime.now().strftime("%y%m%d-%H%M")
@staticmethod
def dataset2dataloader(
dataset, num_workers, shuffle=True
):
return DataLoader(
dataset,
batch_size=opt.batch_size,
shuffle=shuffle,
num_workers=num_workers,
drop_last=False
)
def test(self):
dataset = self.test_dataset
with torch.no_grad():
print('num_test_data:{}'.format(len(dataset.data)))
self.model.eval()
loader = self.dataset2dataloader(
dataset, shuffle=False, num_workers=self.num_workers
)
loss_list = []
wer = []
cer = []
crit = nn.CTCLoss(zero_infinity=True)
tic = time.time()
print('RUNNING VALIDATION')
pbar = tqdm(loader)
for (i_iter, input_sample) in enumerate(pbar):
PauseChecker.check()
vid = input_sample.get('vid').cuda()
vid_len = input_sample.get('vid_len').cuda()
txt, txt_len = self.extract_char_output(input_sample)
y = self.net(vid)
# assert not contains_nan_or_inf(y)
assert (
self.pre_gru_repeats * vid_len.view(-1) >
2 * txt_len.view(-1)
).all()
loss = crit(
y.transpose(0, 1).log_softmax(-1), txt,
self.pre_gru_repeats * vid_len.view(-1),
txt_len.view(-1)
).detach().cpu().numpy()
loss_list.append(loss)
pred_txt = dataset.ctc_decode(y)
truth_txt = [
dataset.arr2txt(txt[_], start=1)
for _ in range(txt.size(0))
]
wer.extend(dataset.wer(pred_txt, truth_txt))
cer.extend(dataset.cer(pred_txt, truth_txt))
if i_iter % opt.display == 0:
v = 1.0 * (time.time() - tic) / (i_iter + 1)
eta = v * (len(loader) - i_iter) / 3600.0
self.log_pred_texts(pred_txt, truth_txt, sub_samples=10)
print('test_iter={},eta={},wer={},cer={}'.format(
i_iter, eta, np.array(wer).mean(),
np.array(cer).mean()
))
print(''.join(161 * '-'))
return (
np.array(loss_list).mean(), np.array(wer).mean(),
np.array(cer).mean()
)
def extract_char_output(self, input_sample):
"""
extract output character sequence from input_sample
output character sequence is text if char_map is CharMap.letters
output character sequence is phonemes if char_map is CharMap.phonemes
"""
if self.char_map == CharMap.letters:
txt = input_sample.get('txt').cuda()
txt_len = input_sample.get('txt_len').cuda()
elif self.char_map == CharMap.phonemes:
txt = input_sample.get('phonemes').cuda()
txt_len = input_sample.get('phonemes_len').cuda()
elif self.char_map == CharMap.cmu_phonemes:
txt = input_sample.get('cmu_phonemes').cuda()
txt_len = input_sample.get('cmu_phonemes_len').cuda()
else:
raise ValueError(f'UNSUPPORTED CHAR_MAP: {self.char_map}')
return txt, txt_len
def train(self):
self.load_datasets()
self.create_model()
dataset = self.train_dataset
loader = self.dataset2dataloader(
dataset, num_workers=self.num_workers
)
"""
optimizer = optim.Adam(
self.model.parameters(), lr=opt.base_lr,
weight_decay=0., amsgrad=True
)
"""
optimizer = optim.RMSprop(
self.model.parameters(), lr=opt.base_lr
)
print('num_train_data:{}'.format(len(dataset.data)))
# don't allow loss function to create infinite loss for
# sequences that are too short
crit = nn.CTCLoss(zero_infinity=True)
tic = time.time()
train_wer = []
self.best_test_loss = float('inf')
log_scalar = functools.partial(self.log_scalar, label='train')
for epoch in range(opt.max_epoch):
print(f'RUNNING EPOCH {epoch}')
pbar = tqdm(loader)
for (i_iter, input_sample) in enumerate(pbar):
PauseChecker.check()
self.model.train()
vid = input_sample.get('vid').cuda()
vid_len = input_sample.get('vid_len').cuda()
txt, txt_len = self.extract_char_output(input_sample)
optimizer.zero_grad()
y = self.net(vid)
assert not contains_nan_or_inf(y)
assert (
self.pre_gru_repeats * vid_len.view(-1) >
2 * txt_len.view(-1)
).all()
loss = crit(
y.transpose(0, 1).log_softmax(-1), txt,
self.pre_gru_repeats * vid_len.view(-1),
txt_len.view(-1)
)
if contains_nan_or_inf(loss):
print(f'LOSS IS INVALID. SKIPPING {i_iter}')
# print('Y', y)
# print('txt', txt)
continue
loss.backward()
params = self.model.parameters()
# Check for NaNs in gradients
if any(torch.isnan(p.grad).any() for p in params):
optimizer.zero_grad() # Clear gradients to prevent update
print('SKIPPING NAN GRADS')
continue
if opt.is_optimize:
optimizer.step()
assert not contains_nan_or_inf(self.model.conv1.weight)
tot_iter = i_iter + epoch * len(loader)
pred_txt = dataset.ctc_decode(y)
truth_txt = [
dataset.arr2txt(txt[_], start=1)
for _ in range(txt.size(0))
]
train_wer.extend(dataset.wer(pred_txt, truth_txt))
if tot_iter % opt.display == 0:
v = 1.0 * (time.time() - tic) / (tot_iter + 1)
eta = (len(loader) - i_iter) * v / 3600.0
wer = np.array(train_wer).mean()
log_scalar('loss', loss, tot_iter)
log_scalar('wer', wer, tot_iter)
self.log_pred_texts(pred_txt, truth_txt, sub_samples=3)
print('epoch={},tot_iter={},eta={},loss={},train_wer={}'
.format(
epoch, tot_iter, eta, loss,
np.array(train_wer).mean()
)
)
print(''.join(161 * '-'))
if (tot_iter > 0) and (tot_iter % opt.test_step == 0):
# if tot_iter % opt.test_step == 0:
self.run_test(tot_iter, optimizer)
@staticmethod
def log_pred_texts(pred_txt, truth_txt, pad=80, sub_samples=None):
line_length = 2 * pad + 1
print(''.join(line_length * '-'))
print('{:<{pad}}|{:>{pad}}'.format(
'predict', 'truth', pad=pad
))
print(''.join(line_length * '-'))
zipped_samples = list(zip(pred_txt, truth_txt))
if sub_samples is not None:
zipped_samples = zipped_samples[:sub_samples]
for (predict, truth) in zipped_samples:
print('{:<{pad}}|{:>{pad}}'.format(
predict, truth, pad=pad
))
print(''.join(line_length * '-'))
def run_test(self, tot_iter, optimizer):
log_scalar = functools.partial(self.log_scalar, label='test')
(loss, wer, cer) = self.test()
print('i_iter={},lr={},loss={},wer={},cer={}'.format(
tot_iter, show_lr(optimizer), loss, wer, cer
))
log_scalar('loss', loss, tot_iter)
log_scalar('wer', wer, tot_iter)
log_scalar('cer', cer, tot_iter)
if loss < self.best_test_loss:
print(f'NEW BEST LOSS: {loss}')
self.best_test_loss = loss
savename = 'I{}-L{:.4f}-W{:.4f}-C{:.4f}'.format(
tot_iter, loss, wer, cer
)
savename = savename.replace('.', '') + '.pt'
savepath = os.path.join(self.weights_dir, savename)
(save_dir, name) = os.path.split(savepath)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(self.model.state_dict(), savepath)
print(f'best model saved at {savepath}')
if not opt.is_optimize:
exit()
def predict_sample(self, input_sample):
self.model.eval()
vid = input_sample.get('vid').cuda()
return self.predict_video(vid)
def predict_video(self, video):
video = video.cuda()
vid = video.unsqueeze(0)
y = self.net(vid)
pred_txt = self.train_dataset.ctc_decode(y)
return pred_txt |