|
import logging |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present |
|
from transformers.activations import ACT2FN |
|
from transformers import BertPreTrainedModel |
|
from transformers.modeling_outputs import (MaskedLMOutput, |
|
SequenceClassifierOutput) |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
from .bert_layers_mosa import BertModel |
|
from .configuration_bert import BertConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ClinicalMosaicForEmbeddingGeneration(BertPreTrainedModel): |
|
config_class = BertConfig |
|
|
|
def __init__(self, config, **kwargs): |
|
""" |
|
Initializes the BertEmbeddings class. |
|
|
|
Args: |
|
config (BertConfig): The configuration for the BERT model. |
|
add_pooling_layer (bool, optional): Whether to add a pooling layer. Defaults to False. |
|
""" |
|
super().__init__(config) |
|
self.config = config |
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
|
|
self.post_init() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs |
|
): |
|
"""Load from pre-trained.""" |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
|
|
|
|
archive_file = hf_hub_download( |
|
repo_id=pretrained_checkpoint, |
|
filename="model.safetensors", |
|
|
|
) |
|
|
|
|
|
state_dict = load_file(archive_file) |
|
|
|
|
|
state_dict = {f'bert.{key}': value for key, value in state_dict.items()} |
|
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}" |
|
) |
|
|
|
logger.warning(f"the number of which is equal to {len(missing_keys)}") |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}", |
|
) |
|
logger.warning(f"the number of which is equal to {len(unexpected_keys)}") |
|
|
|
return model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
subset_mask: Optional[torch.Tensor] = None, |
|
output_all_encoded_layers: bool = True, |
|
) -> torch.Tensor: |
|
|
|
embedding_output = self.bert.embeddings(input_ids, token_type_ids, position_ids) |
|
|
|
encoder_outputs_all = self.bert.encoder( |
|
embedding_output, |
|
attention_mask, |
|
output_all_encoded_layers=output_all_encoded_layers, |
|
subset_mask=subset_mask, |
|
) |
|
|
|
|
|
return encoder_outputs_all |
|
|
|
class ClinicalMosaicForSequenceClassification(BertPreTrainedModel): |
|
"""Bert Model transformer with a sequence classification/regression head. |
|
This head is just a linear layer on top of the pooled output. |
|
""" |
|
config_class = BertConfig |
|
|
|
def __init__(self, config, **kwargs): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
self.bert = BertModel(config, add_pooling_layer=True) |
|
classifier_dropout = ( |
|
config.classifier_dropout |
|
if config.classifier_dropout is not None |
|
else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs |
|
): |
|
"""Load from pre-trained.""" |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
|
|
|
|
archive_file = hf_hub_download( |
|
repo_id=pretrained_checkpoint, |
|
filename="model.safetensors", |
|
) |
|
|
|
|
|
state_dict = load_file(archive_file) |
|
|
|
|
|
state_dict = {f'bert.{key}': value for key, value in state_dict.items()} |
|
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
num_classifier_params = config.hidden_size * config.num_labels + config.num_labels |
|
classifier_keys = {"classifier.weight", "classifier.bias", "bert.pooler.dense.weight", "bert.pooler.dense.bias"} |
|
|
|
|
|
if set(missing_keys) == classifier_keys: |
|
print( |
|
f"Checkpoint does not contain the classification layer " |
|
f"({config.hidden_size}x{config.num_labels} + {config.num_labels} = {num_classifier_params} params). " |
|
"It will be randomly initialized." |
|
) |
|
elif len(missing_keys) > 0: |
|
logger.warning( |
|
f"Checkpoint is missing {len(missing_keys)} parameters, including possibly critical ones: " |
|
f"{', '.join(missing_keys)}" |
|
) |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}", |
|
) |
|
logger.warning(f"the number of which is equal to {len(unexpected_keys)}") |
|
|
|
return model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=None, |
|
attentions=None, |
|
) |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
class BertLMPredictionHead(nn.Module): |
|
|
|
def __init__(self, config, bert_model_embedding_weights): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), |
|
bert_model_embedding_weights.size(0)) |
|
self.decoder.weight = bert_model_embedding_weights |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
|
|
def __init__(self, config, bert_model_embedding_weights): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config, |
|
bert_model_embedding_weights) |
|
|
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
class ClinicalMosaicForForMaskedLM(BertPreTrainedModel): |
|
config_class = BertConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
warnings.warn( |
|
'If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for ' |
|
'bi-directional self-attention.') |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.cls = BertOnlyMLMHead(config, |
|
self.bert.embeddings.word_embeddings.weight) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (input_ids is not None) == (inputs_embeds is not None): |
|
raise ValueError('Must specify either input_ids or input_embeds!') |
|
|
|
if labels is None: |
|
masked_tokens_mask = None |
|
else: |
|
masked_tokens_mask = labels > 0 |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
masked_tokens_mask=masked_tokens_mask, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
masked_token_idx = torch.nonzero(labels.flatten() > 0, |
|
as_tuple=False).flatten() |
|
loss = loss_fct(prediction_scores, |
|
labels.flatten()[masked_token_idx]) |
|
|
|
assert input_ids is not None, 'Coding error; please open an issue' |
|
batch, seqlen = input_ids.shape[:2] |
|
prediction_scores = rearrange(index_put_first_axis( |
|
prediction_scores, masked_token_idx, batch * seqlen), |
|
'(b s) d -> b s d', |
|
b=batch) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs[0], |
|
attentions=None, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
**model_kwargs): |
|
input_shape = input_ids.shape |
|
effective_batch_size = input_shape[0] |
|
|
|
|
|
if self.config.pad_token_id is None: |
|
raise ValueError('The PAD token should be defined for generation') |
|
|
|
attention_mask = torch.cat([ |
|
attention_mask, |
|
attention_mask.new_zeros((attention_mask.shape[0], 1)) |
|
], |
|
dim=-1) |
|
dummy_token = torch.full((effective_batch_size, 1), |
|
self.config.pad_token_id, |
|
dtype=torch.long, |
|
device=input_ids.device) |
|
input_ids = torch.cat([input_ids, dummy_token], dim=1) |
|
|
|
return {'input_ids': input_ids, 'attention_mask': attention_mask} |