|
import logging |
|
from typing import Optional |
|
|
|
import torch |
|
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present |
|
from transformers import BertPreTrainedModel |
|
|
|
from bert_layers_mosa import BertModel |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class MosaicBertForEmbeddingGeneration(BertPreTrainedModel): |
|
|
|
def __init__(self, config, add_pooling_layer=False): |
|
""" |
|
Initializes the BertEmbeddings class. |
|
|
|
Args: |
|
config (BertConfig): The configuration for the BERT model. |
|
add_pooling_layer (bool, optional): Whether to add a pooling layer. Defaults to False. |
|
""" |
|
super().__init__(config) |
|
assert ( |
|
config.num_hidden_layers >= config.num_embedding_layers |
|
), "num_hidden_layers should be greater than or equal to num_embedding_layers" |
|
self.config = config |
|
self.strategy = config.strategy |
|
self.bert = BertModel(config, add_pooling_layer=add_pooling_layer) |
|
|
|
self.post_init() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs |
|
): |
|
"""Load from pre-trained.""" |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
|
|
|
|
state_dict = torch.load(pretrained_checkpoint) |
|
|
|
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.") |
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}" |
|
) |
|
|
|
logger.warning(f"the number of which is equal to {len(missing_keys)}") |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}", |
|
) |
|
logger.warning(f"the number of which is equal to {len(unexpected_keys)}") |
|
|
|
return model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
subset_mask: Optional[torch.Tensor] = None, |
|
output_all_encoded_layers: Book = True, |
|
) -> torch.Tensor: |
|
|
|
embedding_output = self.bert.embeddings(input_ids, token_type_ids, position_ids) |
|
|
|
encoder_outputs_all = self.bert.encoder( |
|
embedding_output, |
|
attention_mask, |
|
output_all_encoded_layers=output_all_encoded_layers, |
|
subset_mask=subset_mask, |
|
) |
|
|
|
|
|
return encoder_outputs_all |