|
import logging |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present |
|
from transformers import BertPreTrainedModel |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
from .bert_layers_mosa import BertModel |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ClinicalMosaicForEmbeddingGeneration(BertPreTrainedModel): |
|
|
|
def __init__(self, config, **kwargs): |
|
""" |
|
Initializes the BertEmbeddings class. |
|
|
|
Args: |
|
config (BertConfig): The configuration for the BERT model. |
|
add_pooling_layer (bool, optional): Whether to add a pooling layer. Defaults to False. |
|
""" |
|
super().__init__(config) |
|
self.config = config |
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
|
|
self.post_init() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs |
|
): |
|
"""Load from pre-trained.""" |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
|
|
|
|
archive_file = hf_hub_download( |
|
repo_id=pretrained_checkpoint, |
|
filename="model.safetensors", |
|
|
|
) |
|
|
|
|
|
state_dict = load_file(archive_file) |
|
|
|
|
|
state_dict = {f'bert.{key}': value for key, value in state_dict.items()} |
|
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}" |
|
) |
|
|
|
logger.warning(f"the number of which is equal to {len(missing_keys)}") |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}", |
|
) |
|
logger.warning(f"the number of which is equal to {len(unexpected_keys)}") |
|
|
|
return model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
subset_mask: Optional[torch.Tensor] = None, |
|
output_all_encoded_layers: bool = True, |
|
) -> torch.Tensor: |
|
|
|
embedding_output = self.bert.embeddings(input_ids, token_type_ids, position_ids) |
|
|
|
encoder_outputs_all = self.bert.encoder( |
|
embedding_output, |
|
attention_mask, |
|
output_all_encoded_layers=output_all_encoded_layers, |
|
subset_mask=subset_mask, |
|
) |
|
|
|
|
|
return encoder_outputs_all |
|
|
|
class ClinicalMosaicForSequenceClassification(BertPreTrainedModel): |
|
"""Bert Model transformer with a sequence classification/regression head. |
|
This head is just a linear layer on top of the pooled output. |
|
""" |
|
|
|
def __init__(self, config, **kwargs): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
self.bert = BertModel(config, add_pooling_layer=True) |
|
classifier_dropout = ( |
|
config.classifier_dropout |
|
if config.classifier_dropout is not None |
|
else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs |
|
): |
|
"""Load from pre-trained.""" |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
|
|
|
|
archive_file = hf_hub_download( |
|
repo_id=pretrained_checkpoint, |
|
filename="model.safetensors", |
|
) |
|
|
|
|
|
state_dict = load_file(archive_file) |
|
|
|
|
|
state_dict = {f'bert.{key}': value for key, value in state_dict.items()} |
|
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
num_classifier_params = config.hidden_size * config.num_labels + config.num_labels |
|
classifier_keys = {"classifier.weight", "classifier.bias", "bert.pooler.dense.weight", "bert.pooler.dense.bias"} |
|
|
|
|
|
if set(missing_keys) == classifier_keys: |
|
print( |
|
f"Checkpoint does not contain the classification layer " |
|
f"({config.hidden_size}x{config.num_labels} + {config.num_labels} = {num_classifier_params} params). " |
|
"It will be randomly initialized." |
|
) |
|
elif len(missing_keys) > 0: |
|
logger.warning( |
|
f"Checkpoint is missing {len(missing_keys)} parameters, including possibly critical ones: " |
|
f"{', '.join(missing_keys)}" |
|
) |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}", |
|
) |
|
logger.warning(f"the number of which is equal to {len(unexpected_keys)}") |
|
|
|
return model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=None, |
|
attentions=None, |
|
) |