SiddharthaM
commited on
Commit
·
aac4857
1
Parent(s):
a0d1507
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: xlm-sentiment-new
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-sentiment-new
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6166
|
23 |
+
- Accuracy: 0.7405
|
24 |
+
- Precision: 0.7375
|
25 |
+
- Recall: 0.7405
|
26 |
+
- F1: 0.7386
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 6
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| No log | 1.0 | 296 | 0.5519 | 0.7310 | 0.7266 | 0.7310 | 0.7277 |
|
58 |
+
| 0.5719 | 2.0 | 592 | 0.5569 | 0.75 | 0.7562 | 0.75 | 0.7302 |
|
59 |
+
| 0.5719 | 3.0 | 888 | 0.5320 | 0.7243 | 0.7269 | 0.7243 | 0.7254 |
|
60 |
+
| 0.477 | 4.0 | 1184 | 0.5771 | 0.7300 | 0.7264 | 0.7300 | 0.7276 |
|
61 |
+
| 0.477 | 5.0 | 1480 | 0.6051 | 0.7376 | 0.7361 | 0.7376 | 0.7368 |
|
62 |
+
| 0.428 | 6.0 | 1776 | 0.6166 | 0.7405 | 0.7375 | 0.7405 | 0.7386 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.24.0.dev0
|
68 |
+
- Pytorch 1.11.0+cu102
|
69 |
+
- Datasets 2.6.1
|
70 |
+
- Tokenizers 0.13.1
|