LLAMA-3_8B_Unaligned_BETA / How_to_Run.py
SicariusSicariiStuff's picture
Upload How_to_Run.py
d63014d verified
raw
history blame
1.98 kB
import transformers
import torch
# Model and tokenizer initialization
model_path_name = "SicariusSicariiStuff/LLAMA-3_8B_Unaligned_BETA" # Replace with your model path
# Initialize the pipeline
pipeline = transformers.pipeline(
"text-generation",
model=model_path_name,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto", # Adjust to 'cuda' if needed
)
# Prepare the message list
message_list = [
[
{'role': 'system', 'content': "You are an AI assistant."},
{'role': 'user', 'content': "Who are you?"}
]
]
# Apply the chat template or manually format the prompts
try:
prompts = [
pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
for messages in message_list
]
except AttributeError:
# Fallback: Manually format the prompts if `apply_chat_template` is unsupported
prompts = [
f"<|im_start|>system\n{msg[0]['content']}<|im_end|>\n"
f"<|im_start|>user\n{msg[1]['content']}<|im_end|>\n<|im_start|>assistant\n"
for msg in message_list
]
# Debugging: Print prompts
print("Formatted Prompts:", prompts)
# Validate tokenizer and model's EOS and PAD token IDs
eos_token_id = pipeline.tokenizer.eos_token_id or 50256 # Default fallback for GPT-like models
pad_token_id = eos_token_id # Ensure consistency
print("EOS Token ID:", eos_token_id)
# Tokenize the prompts (optional debugging step)
tokens = pipeline.tokenizer(prompts, padding=True, return_tensors="pt")
print("Tokenized Input:", tokens)
# Generate the output
try:
outputs = pipeline(
prompts,
max_new_tokens=100, # Reduce for debugging purposes
do_sample=True,
temperature=0.5,
top_p=0.5,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
)
print("Outputs:", outputs)
except Exception as e:
print("Error during generation:", str(e))