ShuaHousetable commited on
Commit
3765cf0
·
1 Parent(s): 24a47e2

End of training

Browse files
Files changed (2) hide show
  1. README.md +60 -0
  2. eval_results.txt +6 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: serverless-roomsort
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # serverless-roomsort
16
+
17
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6939
20
+ - Accuracy: 0.9488
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 64
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 500
46
+ - num_epochs: 1
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | No log | 1.0 | 193 | 0.6939 | 0.9488 |
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.17.0
58
+ - Pytorch 1.10.2+cu113
59
+ - Datasets 1.18.4
60
+ - Tokenizers 0.12.1
eval_results.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ epoch = 1.0
2
+ eval_accuracy = 0.9487554904831625
3
+ eval_loss = 0.6939088702201843
4
+ eval_runtime = 16.1168
5
+ eval_samples_per_second = 42.378
6
+ eval_steps_per_second = 0.683