ShreyashS commited on
Commit
7e6ae4d
·
1 Parent(s): 660a893

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.64 +/- 18.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f489f7b3ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f489f7b3f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f489f7b8040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f489f7b80d0>", "_build": "<function ActorCriticPolicy._build at 0x7f489f7b8160>", "forward": "<function ActorCriticPolicy.forward at 0x7f489f7b81f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f489f7b8280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f489f7b8310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f489f7b83a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f489f7b8430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f489f7b84c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f489f7b8550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f489f7b0930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677865593053057673, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADBbT7DcoQ++tWcvgp9Vb7J57g6SarGPAAAAAAAAAAAzcQ3vXsap7qvsRsyS5z6sJT5jDouKTayAACAPwAAgD8mkDE+Q4ahP7jBAD9SY9m+DNsuPvjGjz4AAAAAAAAAAGYmW713aEM/JJBFPflEjL6t5407v1czPQAAAAAAAAAA2lazPY/CCLqQeEk6fjqUNmZKN7uISGy5AACAPwAAAADA2CC+HMp9P4Ely71boI2+PShAvqWmsT0AAAAAAAAAAJoF4j0+94g/VlgiPv0DwL7Xyys+emCIPQAAAAAAAAAA+p8jvvXhgD/6fxE9rMGnvoxQM75OjVU+AAAAAAAAAADA7oe9rmOcP/sYe71/+q++vjURvvGlgz0AAAAAAAAAAABNlr3HjYQ/F2wBvvoZsL6GshG+kQqfvQAAAAAAAAAAE/MKvig6oT/q3sq+s+qcvvTnjL4FeXu+AAAAAAAAAADTv1E+gE0/P9aAfj3EGJ6+e9zdPX1jcL4AAAAAAAAAANozLT5VAKA+AE+fvv9hfL6cRZy9SseJvAAAAAAAAAAAcxTfPflKjT64MW66+7dMvte7MDztCGw9AAAAAAAAAACA3zK9FECpulrCQLNWZiWuJOd5uoVvtzMAAIA/AACAP2YlEj0lE1U/ZhW/OHq1vr63kE895asCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrg0V47yncECUhpRSlIwBbJRNigGMAXSUR0CSyHxffGdadX2UKGgGaAloD0MIy52ZYLiAcUCUhpRSlGgVTRkBaBZHQJLI2a6STyJ1fZQoaAZoCWgPQwgPgSOBBqByQJSGlFKUaBVN4wNoFkdAkskCojv/i3V9lChoBmgJaA9DCNKqlnQUMnBAlIaUUpRoFU2tAWgWR0CSyRw0waisdX2UKGgGaAloD0MIuLHZkSoTc0CUhpRSlGgVTRUBaBZHQJLJo4yXUpd1fZQoaAZoCWgPQwjChNGsbH1tQJSGlFKUaBVNAgFoFkdAksqT7VJ+UnV9lChoBmgJaA9DCAdDHVa4lm1AlIaUUpRoFU2QAWgWR0CSyyEOiFj/dX2UKGgGaAloD0MIJxdjYJ0UcECUhpRSlGgVTRIBaBZHQJLLl3B55Z91fZQoaAZoCWgPQwhEboYb8B1MQJSGlFKUaBVL7WgWR0CSy9msNlRQdX2UKGgGaAloD0MIgh5q23AcckCUhpRSlGgVS/FoFkdAksvlZ5iVjnV9lChoBmgJaA9DCNanHJNFcXFAlIaUUpRoFU2iAWgWR0CSzCbZOBUadX2UKGgGaAloD0MI6Po+HOSYckCUhpRSlGgVS/RoFkdAksxJs0pEyHV9lChoBmgJaA9DCFoNiXus3m5AlIaUUpRoFU0PAWgWR0CSzfWPcSGrdX2UKGgGaAloD0MIwxGkUuyzcUCUhpRSlGgVTRQBaBZHQJLONO+IuXh1fZQoaAZoCWgPQwhSZK2h1KdyQJSGlFKUaBVNCgFoFkdAktDIhyKekHV9lChoBmgJaA9DCMUgsHIoV3FAlIaUUpRoFU0fAWgWR0CS0anndO6/dX2UKGgGaAloD0MIoWmJldEUcUCUhpRSlGgVTS4BaBZHQJLR60G/vfF1fZQoaAZoCWgPQwhodt1b0cZwQJSGlFKUaBVNRwFoFkdAktJMBltj1HV9lChoBmgJaA9DCEFIFjCB/0tAlIaUUpRoFUv2aBZHQJLTsIAwPAh1fZQoaAZoCWgPQwhgBmNEIgNzQJSGlFKUaBVNSAFoFkdAktPiuyNXHXV9lChoBmgJaA9DCHB5rBlZYHBAlIaUUpRoFU0MAWgWR0CS1Bsenyd4dX2UKGgGaAloD0MIYr68APtObUCUhpRSlGgVTTUBaBZHQJLUSwQlKK51fZQoaAZoCWgPQwg2H9eGCtNwQJSGlFKUaBVNFQFoFkdAktVA5q/M4nV9lChoBmgJaA9DCH9rJ0rCI3BAlIaUUpRoFU1CAWgWR0CS1VozvZyudX2UKGgGaAloD0MIN24xP7dOcUCUhpRSlGgVTToBaBZHQJLV6sDGLk11fZQoaAZoCWgPQwhoCMcsuxxwQJSGlFKUaBVNMgFoFkdAktYFeBxxUHV9lChoBmgJaA9DCDkKEAVz83BAlIaUUpRoFU0oAWgWR0CS16kjopx4dX2UKGgGaAloD0MI1SZO7veJcUCUhpRSlGgVTbMCaBZHQJLYPDuSfUZ1fZQoaAZoCWgPQwiQ9GkVvcJxQJSGlFKUaBVNcwFoFkdAktpNITXarXV9lChoBmgJaA9DCLZI2o0+3nJAlIaUUpRoFU0UAWgWR0CS2wgWJrLydX2UKGgGaAloD0MIUG9GzZfUckCUhpRSlGgVTSoBaBZHQJLb474i5d51fZQoaAZoCWgPQwjsv85Nm5hxQJSGlFKUaBVNJAFoFkdAktyCKrJbMXV9lChoBmgJaA9DCAaBlUOLznBAlIaUUpRoFUv5aBZHQJLc0toSL611fZQoaAZoCWgPQwiN0M/Ua+5wQJSGlFKUaBVNWgFoFkdAkt0r2tdRi3V9lChoBmgJaA9DCNEHy9jQPHFAlIaUUpRoFU0QAWgWR0CS3a8XvYvndX2UKGgGaAloD0MIWMfxQ2XzckCUhpRSlGgVTZoCaBZHQJLe9DIBBAx1fZQoaAZoCWgPQwg65jxjXx1yQJSGlFKUaBVNCAFoFkdAkt9pxNqQBHV9lChoBmgJaA9DCMamlUKgR3JAlIaUUpRoFU0wAWgWR0CS38TzundgdX2UKGgGaAloD0MI48RXO4rEb0CUhpRSlGgVTV8BaBZHQJLhD67/XGx1fZQoaAZoCWgPQwgsuvWa3glxQJSGlFKUaBVNPQFoFkdAkuGPukUKzHV9lChoBmgJaA9DCJKtLqcEvXFAlIaUUpRoFU0sAWgWR0CS4delKsdUdX2UKGgGaAloD0MIsdtnlZk0cUCUhpRSlGgVTSoBaBZHQJLkRfLLZBd1fZQoaAZoCWgPQwhNg6J5APRuQJSGlFKUaBVNIwFoFkdAkuTqAJ9iMHV9lChoBmgJaA9DCAbUm1FzzW1AlIaUUpRoFU0CAWgWR0CS6GJYkmhNdX2UKGgGaAloD0MItksbDsurbkCUhpRSlGgVTT8BaBZHQJLqFEqlP8B1fZQoaAZoCWgPQwiQoPgxZpxwQJSGlFKUaBVNGwFoFkdAkuqC/O+qR3V9lChoBmgJaA9DCAYQPpRolm9AlIaUUpRoFU04AWgWR0CS6rGMGX5WdX2UKGgGaAloD0MIrKsCtdjRcECUhpRSlGgVTRsBaBZHQJLrRtwaR6p1fZQoaAZoCWgPQwhHA3gLJCtuQJSGlFKUaBVNMwFoFkdAkwDUuUUwjHV9lChoBmgJaA9DCJQSglX1QXBAlIaUUpRoFU1NAWgWR0CTASgeA/cGdX2UKGgGaAloD0MIEaj+QSTob0CUhpRSlGgVTSMBaBZHQJMBPVTaTOh1fZQoaAZoCWgPQwg4EJIFzGluQJSGlFKUaBVNKAFoFkdAkwMUKJEYwnV9lChoBmgJaA9DCGx6UFCK+GxAlIaUUpRoFU0gAWgWR0CTAzwkPczqdX2UKGgGaAloD0MIECTvHIpUcUCUhpRSlGgVTVoBaBZHQJMDg0l7dBV1fZQoaAZoCWgPQwj7sN6olRVzQJSGlFKUaBVNVgFoFkdAkwOkIkZ75XV9lChoBmgJaA9DCGQ8SiV8d3BAlIaUUpRoFU0ZAWgWR0CTBVQfp2U0dX2UKGgGaAloD0MIdjdPdUgIckCUhpRSlGgVTUQBaBZHQJMGT8ZUDMh1fZQoaAZoCWgPQwhyGqIK/41vQJSGlFKUaBVNuAJoFkdAkwa5AyEcsHV9lChoBmgJaA9DCL3IBPzaiHFAlIaUUpRoFU0cAWgWR0CTCMmlImPYdX2UKGgGaAloD0MIAcPy51sdckCUhpRSlGgVTRcBaBZHQJMI9mwqy4Z1fZQoaAZoCWgPQwhwIvq1dc5xQJSGlFKUaBVNLQFoFkdAkwkHcQAdXHV9lChoBmgJaA9DCHu7JTmgYnFAlIaUUpRoFU1ZAWgWR0CTCYNOuaF3dX2UKGgGaAloD0MIaykg7b9NcUCUhpRSlGgVS/5oFkdAkwmcK9f1H3V9lChoBmgJaA9DCGsqi8KuU3JAlIaUUpRoFU0JAWgWR0CTCZulGgBcdX2UKGgGaAloD0MIVtY2xeN6cECUhpRSlGgVTUUBaBZHQJMJ+34Kx9p1fZQoaAZoCWgPQwijBz4GK+BvQJSGlFKUaBVNCgJoFkdAkwrQ6hg3LnV9lChoBmgJaA9DCMjqVs/JunFAlIaUUpRoFU1EAWgWR0CTC40u14PgdX2UKGgGaAloD0MIZd6q69BCb0CUhpRSlGgVTQ0BaBZHQJML2sFMZgp1fZQoaAZoCWgPQwh2G9R+a09tQJSGlFKUaBVNIgFoFkdAkwxBCpm29nV9lChoBmgJaA9DCKc/+5Gih3BAlIaUUpRoFU0rAWgWR0CTDM/+sHSndX2UKGgGaAloD0MIMxr5vOJ/cECUhpRSlGgVTQMBaBZHQJMOMPWhAW11fZQoaAZoCWgPQwgrMGR1K0hwQJSGlFKUaBVNJwFoFkdAkw5nKSxJNHV9lChoBmgJaA9DCBYUBmUaP3JAlIaUUpRoFU0XAWgWR0CTD0pItlI3dX2UKGgGaAloD0MIQu4iTNG/bUCUhpRSlGgVTboBaBZHQJMRGUwBYFJ1fZQoaAZoCWgPQwiBBTBlYGNuQJSGlFKUaBVNLwFoFkdAkxLQ9vCMxXV9lChoBmgJaA9DCLivA+eMVXBAlIaUUpRoFU0nAWgWR0CTE1fYBeXzdX2UKGgGaAloD0MILuI7MWv+cECUhpRSlGgVTToBaBZHQJMTYibDuSh1fZQoaAZoCWgPQwiY9s39VWxwQJSGlFKUaBVNBwFoFkdAkxU4p+c6NnV9lChoBmgJaA9DCB/zAYFO3HFAlIaUUpRoFU1oAWgWR0CTFf4FRpDedX2UKGgGaAloD0MIaqSl8rb7cECUhpRSlGgVTWEBaBZHQJMWQudwvQF1fZQoaAZoCWgPQwhtc2N6ghpwQJSGlFKUaBVNjgFoFkdAkxaf60pmVnV9lChoBmgJaA9DCDscXaW7XXBAlIaUUpRoFU0rAWgWR0CTF4Nyo4uLdX2UKGgGaAloD0MIh/pd2Bp9cUCUhpRSlGgVTWEBaBZHQJMY7hisnzB1fZQoaAZoCWgPQwic/YFyG51wQJSGlFKUaBVNFgFoFkdAkxmg2MsH0XV9lChoBmgJaA9DCB+7C5QUUHJAlIaUUpRoFU2bAWgWR0CTGlMSK3uvdX2UKGgGaAloD0MIGXYYk766cECUhpRSlGgVTVgBaBZHQJMadCCz1K51fZQoaAZoCWgPQwh+HqM88zRxQJSGlFKUaBVNDAFoFkdAkxqTt9hJAnV9lChoBmgJaA9DCITTghc9QnNAlIaUUpRoFU0dAWgWR0CTHx6+WWyDdX2UKGgGaAloD0MIdeWzPM9XcUCUhpRSlGgVTZcBaBZHQJMfVN5+pfh1fZQoaAZoCWgPQwhlAKjiRqtyQJSGlFKUaBVNJwFoFkdAkyA5TuOS4nV9lChoBmgJaA9DCHmVtU3xl1NAlIaUUpRoFUveaBZHQJMjKALApKB1fZQoaAZoCWgPQwi9/E6TGeZwQJSGlFKUaBVNZAFoFkdAkyOzAJswc3V9lChoBmgJaA9DCIYCtoMR305AlIaUUpRoFUvJaBZHQJMj3oMa0hN1fZQoaAZoCWgPQwj+8V61cr1wQJSGlFKUaBVNHwFoFkdAkyQgHVwxWXV9lChoBmgJaA9DCDfiyW4mYnJAlIaUUpRoFU0cAWgWR0CTJOSKWLP2dX2UKGgGaAloD0MIQ48YPXf0cECUhpRSlGgVTT8BaBZHQJMlF8IAwPB1fZQoaAZoCWgPQwgV4pF4OZByQJSGlFKUaBVNQAFoFkdAkyVpGKAJ9nV9lChoBmgJaA9DCK95VWd1AHNAlIaUUpRoFU2+AWgWR0CTJWqYqoZRdX2UKGgGaAloD0MIqBq9GmDycUCUhpRSlGgVTb8CaBZHQJMmAWXTmXB1fZQoaAZoCWgPQwjW/znMF9JtQJSGlFKUaBVNaAFoFkdAkyYW9YfW+XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457e8fdadc52e33a1db62f40a7f377a12dc8b246c7cd0c30ebaac59e17302375
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f489f7b3ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f489f7b3f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f489f7b8040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f489f7b80d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f489f7b8160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f489f7b81f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f489f7b8280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f489f7b8310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f489f7b83a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f489f7b8430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f489f7b84c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f489f7b8550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f489f7b0930>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677865593053057673,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADBbT7DcoQ++tWcvgp9Vb7J57g6SarGPAAAAAAAAAAAzcQ3vXsap7qvsRsyS5z6sJT5jDouKTayAACAPwAAgD8mkDE+Q4ahP7jBAD9SY9m+DNsuPvjGjz4AAAAAAAAAAGYmW713aEM/JJBFPflEjL6t5407v1czPQAAAAAAAAAA2lazPY/CCLqQeEk6fjqUNmZKN7uISGy5AACAPwAAAADA2CC+HMp9P4Ely71boI2+PShAvqWmsT0AAAAAAAAAAJoF4j0+94g/VlgiPv0DwL7Xyys+emCIPQAAAAAAAAAA+p8jvvXhgD/6fxE9rMGnvoxQM75OjVU+AAAAAAAAAADA7oe9rmOcP/sYe71/+q++vjURvvGlgz0AAAAAAAAAAABNlr3HjYQ/F2wBvvoZsL6GshG+kQqfvQAAAAAAAAAAE/MKvig6oT/q3sq+s+qcvvTnjL4FeXu+AAAAAAAAAADTv1E+gE0/P9aAfj3EGJ6+e9zdPX1jcL4AAAAAAAAAANozLT5VAKA+AE+fvv9hfL6cRZy9SseJvAAAAAAAAAAAcxTfPflKjT64MW66+7dMvte7MDztCGw9AAAAAAAAAACA3zK9FECpulrCQLNWZiWuJOd5uoVvtzMAAIA/AACAP2YlEj0lE1U/ZhW/OHq1vr63kE895asCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrg0V47yncECUhpRSlIwBbJRNigGMAXSUR0CSyHxffGdadX2UKGgGaAloD0MIy52ZYLiAcUCUhpRSlGgVTRkBaBZHQJLI2a6STyJ1fZQoaAZoCWgPQwgPgSOBBqByQJSGlFKUaBVN4wNoFkdAkskCojv/i3V9lChoBmgJaA9DCNKqlnQUMnBAlIaUUpRoFU2tAWgWR0CSyRw0waisdX2UKGgGaAloD0MIuLHZkSoTc0CUhpRSlGgVTRUBaBZHQJLJo4yXUpd1fZQoaAZoCWgPQwjChNGsbH1tQJSGlFKUaBVNAgFoFkdAksqT7VJ+UnV9lChoBmgJaA9DCAdDHVa4lm1AlIaUUpRoFU2QAWgWR0CSyyEOiFj/dX2UKGgGaAloD0MIJxdjYJ0UcECUhpRSlGgVTRIBaBZHQJLLl3B55Z91fZQoaAZoCWgPQwhEboYb8B1MQJSGlFKUaBVL7WgWR0CSy9msNlRQdX2UKGgGaAloD0MIgh5q23AcckCUhpRSlGgVS/FoFkdAksvlZ5iVjnV9lChoBmgJaA9DCNanHJNFcXFAlIaUUpRoFU2iAWgWR0CSzCbZOBUadX2UKGgGaAloD0MI6Po+HOSYckCUhpRSlGgVS/RoFkdAksxJs0pEyHV9lChoBmgJaA9DCFoNiXus3m5AlIaUUpRoFU0PAWgWR0CSzfWPcSGrdX2UKGgGaAloD0MIwxGkUuyzcUCUhpRSlGgVTRQBaBZHQJLONO+IuXh1fZQoaAZoCWgPQwhSZK2h1KdyQJSGlFKUaBVNCgFoFkdAktDIhyKekHV9lChoBmgJaA9DCMUgsHIoV3FAlIaUUpRoFU0fAWgWR0CS0anndO6/dX2UKGgGaAloD0MIoWmJldEUcUCUhpRSlGgVTS4BaBZHQJLR60G/vfF1fZQoaAZoCWgPQwhodt1b0cZwQJSGlFKUaBVNRwFoFkdAktJMBltj1HV9lChoBmgJaA9DCEFIFjCB/0tAlIaUUpRoFUv2aBZHQJLTsIAwPAh1fZQoaAZoCWgPQwhgBmNEIgNzQJSGlFKUaBVNSAFoFkdAktPiuyNXHXV9lChoBmgJaA9DCHB5rBlZYHBAlIaUUpRoFU0MAWgWR0CS1Bsenyd4dX2UKGgGaAloD0MIYr68APtObUCUhpRSlGgVTTUBaBZHQJLUSwQlKK51fZQoaAZoCWgPQwg2H9eGCtNwQJSGlFKUaBVNFQFoFkdAktVA5q/M4nV9lChoBmgJaA9DCH9rJ0rCI3BAlIaUUpRoFU1CAWgWR0CS1VozvZyudX2UKGgGaAloD0MIN24xP7dOcUCUhpRSlGgVTToBaBZHQJLV6sDGLk11fZQoaAZoCWgPQwhoCMcsuxxwQJSGlFKUaBVNMgFoFkdAktYFeBxxUHV9lChoBmgJaA9DCDkKEAVz83BAlIaUUpRoFU0oAWgWR0CS16kjopx4dX2UKGgGaAloD0MI1SZO7veJcUCUhpRSlGgVTbMCaBZHQJLYPDuSfUZ1fZQoaAZoCWgPQwiQ9GkVvcJxQJSGlFKUaBVNcwFoFkdAktpNITXarXV9lChoBmgJaA9DCLZI2o0+3nJAlIaUUpRoFU0UAWgWR0CS2wgWJrLydX2UKGgGaAloD0MIUG9GzZfUckCUhpRSlGgVTSoBaBZHQJLb474i5d51fZQoaAZoCWgPQwjsv85Nm5hxQJSGlFKUaBVNJAFoFkdAktyCKrJbMXV9lChoBmgJaA9DCAaBlUOLznBAlIaUUpRoFUv5aBZHQJLc0toSL611fZQoaAZoCWgPQwiN0M/Ua+5wQJSGlFKUaBVNWgFoFkdAkt0r2tdRi3V9lChoBmgJaA9DCNEHy9jQPHFAlIaUUpRoFU0QAWgWR0CS3a8XvYvndX2UKGgGaAloD0MIWMfxQ2XzckCUhpRSlGgVTZoCaBZHQJLe9DIBBAx1fZQoaAZoCWgPQwg65jxjXx1yQJSGlFKUaBVNCAFoFkdAkt9pxNqQBHV9lChoBmgJaA9DCMamlUKgR3JAlIaUUpRoFU0wAWgWR0CS38TzundgdX2UKGgGaAloD0MI48RXO4rEb0CUhpRSlGgVTV8BaBZHQJLhD67/XGx1fZQoaAZoCWgPQwgsuvWa3glxQJSGlFKUaBVNPQFoFkdAkuGPukUKzHV9lChoBmgJaA9DCJKtLqcEvXFAlIaUUpRoFU0sAWgWR0CS4delKsdUdX2UKGgGaAloD0MIsdtnlZk0cUCUhpRSlGgVTSoBaBZHQJLkRfLLZBd1fZQoaAZoCWgPQwhNg6J5APRuQJSGlFKUaBVNIwFoFkdAkuTqAJ9iMHV9lChoBmgJaA9DCAbUm1FzzW1AlIaUUpRoFU0CAWgWR0CS6GJYkmhNdX2UKGgGaAloD0MItksbDsurbkCUhpRSlGgVTT8BaBZHQJLqFEqlP8B1fZQoaAZoCWgPQwiQoPgxZpxwQJSGlFKUaBVNGwFoFkdAkuqC/O+qR3V9lChoBmgJaA9DCAYQPpRolm9AlIaUUpRoFU04AWgWR0CS6rGMGX5WdX2UKGgGaAloD0MIrKsCtdjRcECUhpRSlGgVTRsBaBZHQJLrRtwaR6p1fZQoaAZoCWgPQwhHA3gLJCtuQJSGlFKUaBVNMwFoFkdAkwDUuUUwjHV9lChoBmgJaA9DCJQSglX1QXBAlIaUUpRoFU1NAWgWR0CTASgeA/cGdX2UKGgGaAloD0MIEaj+QSTob0CUhpRSlGgVTSMBaBZHQJMBPVTaTOh1fZQoaAZoCWgPQwg4EJIFzGluQJSGlFKUaBVNKAFoFkdAkwMUKJEYwnV9lChoBmgJaA9DCGx6UFCK+GxAlIaUUpRoFU0gAWgWR0CTAzwkPczqdX2UKGgGaAloD0MIECTvHIpUcUCUhpRSlGgVTVoBaBZHQJMDg0l7dBV1fZQoaAZoCWgPQwj7sN6olRVzQJSGlFKUaBVNVgFoFkdAkwOkIkZ75XV9lChoBmgJaA9DCGQ8SiV8d3BAlIaUUpRoFU0ZAWgWR0CTBVQfp2U0dX2UKGgGaAloD0MIdjdPdUgIckCUhpRSlGgVTUQBaBZHQJMGT8ZUDMh1fZQoaAZoCWgPQwhyGqIK/41vQJSGlFKUaBVNuAJoFkdAkwa5AyEcsHV9lChoBmgJaA9DCL3IBPzaiHFAlIaUUpRoFU0cAWgWR0CTCMmlImPYdX2UKGgGaAloD0MIAcPy51sdckCUhpRSlGgVTRcBaBZHQJMI9mwqy4Z1fZQoaAZoCWgPQwhwIvq1dc5xQJSGlFKUaBVNLQFoFkdAkwkHcQAdXHV9lChoBmgJaA9DCHu7JTmgYnFAlIaUUpRoFU1ZAWgWR0CTCYNOuaF3dX2UKGgGaAloD0MIaykg7b9NcUCUhpRSlGgVS/5oFkdAkwmcK9f1H3V9lChoBmgJaA9DCGsqi8KuU3JAlIaUUpRoFU0JAWgWR0CTCZulGgBcdX2UKGgGaAloD0MIVtY2xeN6cECUhpRSlGgVTUUBaBZHQJMJ+34Kx9p1fZQoaAZoCWgPQwijBz4GK+BvQJSGlFKUaBVNCgJoFkdAkwrQ6hg3LnV9lChoBmgJaA9DCMjqVs/JunFAlIaUUpRoFU1EAWgWR0CTC40u14PgdX2UKGgGaAloD0MIZd6q69BCb0CUhpRSlGgVTQ0BaBZHQJML2sFMZgp1fZQoaAZoCWgPQwh2G9R+a09tQJSGlFKUaBVNIgFoFkdAkwxBCpm29nV9lChoBmgJaA9DCKc/+5Gih3BAlIaUUpRoFU0rAWgWR0CTDM/+sHSndX2UKGgGaAloD0MIMxr5vOJ/cECUhpRSlGgVTQMBaBZHQJMOMPWhAW11fZQoaAZoCWgPQwgrMGR1K0hwQJSGlFKUaBVNJwFoFkdAkw5nKSxJNHV9lChoBmgJaA9DCBYUBmUaP3JAlIaUUpRoFU0XAWgWR0CTD0pItlI3dX2UKGgGaAloD0MIQu4iTNG/bUCUhpRSlGgVTboBaBZHQJMRGUwBYFJ1fZQoaAZoCWgPQwiBBTBlYGNuQJSGlFKUaBVNLwFoFkdAkxLQ9vCMxXV9lChoBmgJaA9DCLivA+eMVXBAlIaUUpRoFU0nAWgWR0CTE1fYBeXzdX2UKGgGaAloD0MILuI7MWv+cECUhpRSlGgVTToBaBZHQJMTYibDuSh1fZQoaAZoCWgPQwiY9s39VWxwQJSGlFKUaBVNBwFoFkdAkxU4p+c6NnV9lChoBmgJaA9DCB/zAYFO3HFAlIaUUpRoFU1oAWgWR0CTFf4FRpDedX2UKGgGaAloD0MIaqSl8rb7cECUhpRSlGgVTWEBaBZHQJMWQudwvQF1fZQoaAZoCWgPQwhtc2N6ghpwQJSGlFKUaBVNjgFoFkdAkxaf60pmVnV9lChoBmgJaA9DCDscXaW7XXBAlIaUUpRoFU0rAWgWR0CTF4Nyo4uLdX2UKGgGaAloD0MIh/pd2Bp9cUCUhpRSlGgVTWEBaBZHQJMY7hisnzB1fZQoaAZoCWgPQwic/YFyG51wQJSGlFKUaBVNFgFoFkdAkxmg2MsH0XV9lChoBmgJaA9DCB+7C5QUUHJAlIaUUpRoFU2bAWgWR0CTGlMSK3uvdX2UKGgGaAloD0MIGXYYk766cECUhpRSlGgVTVgBaBZHQJMadCCz1K51fZQoaAZoCWgPQwh+HqM88zRxQJSGlFKUaBVNDAFoFkdAkxqTt9hJAnV9lChoBmgJaA9DCITTghc9QnNAlIaUUpRoFU0dAWgWR0CTHx6+WWyDdX2UKGgGaAloD0MIdeWzPM9XcUCUhpRSlGgVTZcBaBZHQJMfVN5+pfh1fZQoaAZoCWgPQwhlAKjiRqtyQJSGlFKUaBVNJwFoFkdAkyA5TuOS4nV9lChoBmgJaA9DCHmVtU3xl1NAlIaUUpRoFUveaBZHQJMjKALApKB1fZQoaAZoCWgPQwi9/E6TGeZwQJSGlFKUaBVNZAFoFkdAkyOzAJswc3V9lChoBmgJaA9DCIYCtoMR305AlIaUUpRoFUvJaBZHQJMj3oMa0hN1fZQoaAZoCWgPQwj+8V61cr1wQJSGlFKUaBVNHwFoFkdAkyQgHVwxWXV9lChoBmgJaA9DCDfiyW4mYnJAlIaUUpRoFU0cAWgWR0CTJOSKWLP2dX2UKGgGaAloD0MIQ48YPXf0cECUhpRSlGgVTT8BaBZHQJMlF8IAwPB1fZQoaAZoCWgPQwgV4pF4OZByQJSGlFKUaBVNQAFoFkdAkyVpGKAJ9nV9lChoBmgJaA9DCK95VWd1AHNAlIaUUpRoFU2+AWgWR0CTJWqYqoZRdX2UKGgGaAloD0MIqBq9GmDycUCUhpRSlGgVTb8CaBZHQJMmAWXTmXB1fZQoaAZoCWgPQwjW/znMF9JtQJSGlFKUaBVNaAFoFkdAkyYW9YfW+XVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3edfc7ed4c2844969c3eb610a60f974cfd1f162a37cba3403b557d8e73ebc7a
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1818eeacc0fc45bc3471281c5da31e5fbfbcfba43a04bf42c8c009d31bc1c8eb
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (236 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.6417791013545, "std_reward": 18.6288160298569, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T18:11:55.207920"}