File size: 18,301 Bytes
185670a
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n    Policy class (with both actor and critic) for SAC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ", "__init__": "<function SACPolicy.__init__ at 0x7f6db1d8b8b0>", "_build": "<function SACPolicy._build at 0x7f6db1d8b940>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6db1d8b9d0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7f6db1d8ba60>", "make_actor": "<function SACPolicy.make_actor at 0x7f6db1d8baf0>", "make_critic": "<function SACPolicy.make_critic at 0x7f6db1d8bb80>", "forward": "<function SACPolicy.forward at 0x7f6db1d8bc10>", "_predict": "<function SACPolicy._predict at 0x7f6db1d8bca0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f6db1d8bd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1d8f980>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADVcfhCoJ/MMixCD1V03qak/UePDMUdfW40Xke3rkq6byBjwC7UILdh+FP9V9cHuXzyYNTgUjj/z3spNKqWY1TuNxim6Wug5I8B3yAe+9G6YBhkBHAE7K7Dz3T4sWs8fWEhMaYRCfrwjWu2AHcmZaDDl64yHz64liK8A/ZyjruRg2qb9VFhHs0g7fbNqrLA4PsiUUXnLzHKqkZt2+mz7lbAAFjQU17weoAonxn+4BQlLbHwG+9ZjSBv1oinQhtt1spfKWdfpiOHvqblbkXqWnsRGxtmGyLhv/wa+0XdS7nQWVfobwDGtej9L0wSaFI1gJY+irCCaq8xBIMEEg9Fd41sbFMqyNaa76UnseJZJAMEUL44+Fc4/wAIAD4uM+qzT2TbmEe8dzltmn4NgHH30zJoPll/PPqB3MjitU7Qce37mQM7eHr066BHDZBLFbCAxFSbj2OqclozjAYpse4skkJoUKEjcB9wHAulmFO6rt26AgxCFM0fTTe9/i+B1WVU2Y/mp0HmKMmuJ8kBZiR+8rbiL36pCRdbPaYQRqFL5MwykX7UKMqPmGi40Y1kYnMWrCw/qn/SjM8c12ZrtBNMxULryUfwo2qvR9GCeRFdGAnVwNKtpTziJeR4Nsbn96+/OcbXYSTVKYQ2I8VtOLTzrZH3j5e6Hfd1sOf1UyEdRD59HG2D3VsqlB0aROam7LQ0fNXbAL+f/n2xXtehEYOHh3BHiRbcUMOYWRgMLV9JOHthH5PXyggbmZMeHY8WOauI1vvtdI92EQ3fJ5p9uurtARP5f7w2q8ksqd0P2YtGs5rdv7ubRgqvjtPsqDZSXZ8+OPIjOL8quMrQCEKsHQ22eCVGm71E5+yz/28QmPfvEW2FS2OO7CMX73LD1OQoWugoIllF7zWh/QFaTVUK37jME3qriOHDAvpy/eEpod4ZpJaV4vZMvqkk271kMWFF6xxXR1LSgcaYyOd3xKgTmRu7Vw70YmpPCYuhnVEOYvtz7sEpNmx6pdu6le+rueJJ/DY2Cw9LxbeV8k0Dl/RqiDOHt58VkxnwkV887xSJdLOJxAKjry/+AO/WeM4Noyit2H43csFBFdbAZjqEqFOk6NGUqSdVJi7b0SUMcvC8URcEDQQRAdTIYgif+M52B5WnwSx1sYC2Uu56lO8NwWKv00NJpX/uRE4y5GyQv3kvcfoOnskD9d2nqDrG9D2K6znhPhd2FanpyS4BBca3M04/q+GluwjLyEdIYrT2o+kfRtbXyGyBzvyE7BRNIOiQZNtEBx3dDlDcZLUlQs2z8hg8bchfouXwREgYyNXcTuh1OYA+R/7+o23yvwue7xuSumHIGT0AKJ40JFM4mK1Xc3ezn21/Y6/wFYNxJedLgTSW2puzPK2IKAAujOWHPj+GvJcJELhzJaR+syTamXRQe5S6nERDjvswxS1sirEsFYUdjEOyF48rvOxE1JxHeIWKbWWUrRAdcmNTBiZIHhAYmanJL3QbqOjFJLhBmIPV1Oc0ufd9AcuODiuRPqNcP/Yq3SUXhY9LuvwitkSmkzKM3IB0wh+LLUYhEp13kH35XkolmxBj2vWmjA/+uY7rAbkIMY4MVM3Q/lk850tS2ncViwDndSzSaCjbU/0fVqEuqiOIXhOTdpULQY5ftrmW+7xYJMiy5T2adRzygHEriUa0wqNdjssP4K493N8PkqIZ89v4oAXZXU7VxHkIZbuBoXaUgS+YdyNhhAx6zn2Ffgt+9KYKV41TMg4JYVFTUk3gzA7fzUQ5rtYKOum072ZvXekpAceiq+huvChgyvWgsTJq/m0m6ci9DwagrGamat7MRHOYgk0+zP25+fCYY0HK/ZfIASAAUhP/UlIPE28yVhnlcyA0OQwnyZqkjo3vC9XkyMrQ1R73Yu0kJmsNBmb9TjMZy+y6n3ZGnOi6+Cpk9e0RqLtpYI1aaXAeSsh+k7Qevtl+bsqSQPC6Ygvk47yWLuEGSpZTcfVoeEfxQiNR4bVLQ71okfaWbeq0HP4mSiPuc8GbhpOkFJ2sY8jBHqkM3/ZeWV2SoTEQgC+Xc4xX9V7Y++SZm5ogOrLbEebXaU8SBlJQTyQZeWmXPRCOqVygOYGQJSkfvQSD2WiSx+MW13qMwM3Ewkc5TmjNawMo2BCjzTsVFHQh/+xnqZcoEp3U17w7jAVAzsL0i2hjofHjHy1Jzdy5HFSR7Wgc4/sKxBXs50Kit20vaguvva8b07G+q4NBeYvwQgBcDP3rWb53xyghkPM9xss8fkfevVvDP8gCkyi5hy3Hce1uT6SjTyqPYX2AZMxa0RbjwMPSzIkKxlnx7pETC2+c8ljgxobiBo3weKI1ahyuzyWQ5C3/g1BPm5oJvmZGjj6LYKxLkRYPy7oje5oBdqm5JcccvidqPOwV0M3avJ7YJ1HfKbPEQxDXMy3aJXvrkPR77nsI3sRYmvShTvW4GDJAyAWUtAddRZcK8mLC8X/8ITEIBIwqF0ticcIhudQU3qDRt2mfOI6j8ds/rK0cvRGT1aehyXBxgRLeLiiIL5vDvX7bjdFdeCUAts71yzcZx5rojOFz4nFWPphQ2fJS3Fc7a5Kk4c9u8rccUgDdpRQ9MVWtl5VWHwZ2nzJMky4rSdGjHtHYkbO8JxVtcVRUdZwhzHXN4MQ7VrRK58ce1ZLf1OI3k2pffqP7dKjT+7D8cn4ajOWdwb1K8qPmY5ux3h2xL6FD1I5i5nabr5di3W9qTtIkxy/hBssQokLQp2zZ3iLG67HSJ8bzeIxiSKZk5wUrguVL7+3ItT+iVcnuYCXgH3kDhWuLTAslWhKxDKDM5fWeDUK4u5M6Kv/BfGIuUMWRvfs+TpHv2OZex8YpC915a2dxTpypjMmhDhhGQj5w1NXE3LeXN3l+9VhP1qqjsU5L2Vgy2cYVvBcRYRUJhOnVu/XUYsTrnZuyxS4mPMN4fDQ9H8ElxCdXYQ72f4QwIRD+TlwWxe1LhPdW//0PrP1iqooLDE09tpNLaHIC3DUOe54k0Xntpt1IX5GcIyNZheVZ3D0YKjzIvivyxIF/D5WUvgYXbdtYhgiu4pBmi3lkmVWo5PRoqwS/aOIonqj18qknvIR5I7Tx87eY6DfKzlaat0TrMMcjTPNMXsrafUls4dvYE6kKUmKdG9p1lz3EpyUi5gos8kf3KmloW1UGVFzzQP3XFzP9CRDikZJELgcStm9mqacvJ+dg+TTVdb2/zahze6jmiv7C9WXc0g7QaNQ8X6aggK+DOiuymGcAT4AyzOZnAxw1XirGLp9A4HYtiMxzI9xiYc5GunozXwVybzXVXI3CK7CiDCPrD5YsM88rSadPl66UaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNQAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 155000, "_total_timesteps": 155000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679528999392269254, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAANUvML8AAAAA7rrLNq/DFT4AAAAA0BHdPgAAAADS+Jy+DR8jPy/OHz3/wUK/RoAaPsKPQj8+WUu97oWjwFgSgj0Zg6Y/S5b4PVVUzD4eJz6+tbPoPt1xxT6VfL++AAAAAO66yzbhBUm9AAAAAOuUdT4AAAAA2gzUvl3On8BRb5E8gyCzPxiMtD2zvKI+87RbPpdrcD8QggQ9PemmP9jYBT47GoO/3vDevrWz6D7dccU+KtNCvwAAAADuuss2wNUPPgAAAACzEOM+AAAAALwtyr5BTSQ/xGCyPLISTb+7DiQ+nGFDPwTZUb2bO63AGMBIPdhfrj98vQQ+Ks6ZPkhFWb61s+g+3XHFPlkiPr8AAAAA7rrLNh3f7j0AAAAAIJ7ePgAAAAA1HsG+VhwjP/rCHz3aaEq/Wn0aPn7EQj8WzWS9+WSpwJQ6gD0nfaY/nUX+PUB2qj5sCTi+tbPoPt1xxT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAOsAmb4AAAAAAACAP2BA3DwAAAAAxpBiPAAAAAAOhRi/YgCAPzylDLcfvWO9jpRNPJwvgD86kBc7kuwavPOaMDx+CYA/qEYzu3yYUz+08tG8AACAPwAAgD+SJYS+AAAAAAAAgD8954u6AAAAAIAhLLwAAAAAidsfv4odMz33Dvu7JhaAPwqAtbtUz1I/YxKCPbIPgD8L4Xu56jyAPydil7nJa14+ZnijvQAAgD8AAIA//9WdvgAAAAAAAIA/jXbVPAAAAAB843o8AAAAANyKHr8LGoA/PKDLu1w4mr3uq3k82FmAP/nz/jrKOXa96C+5O8z+gz+JARa63MdIP/yCAL0AAIA/AACAP6ienL4AAAAAAACAP4aHuTwAAAAAhthoPAAAAADXVR2/JwCAP9IwTbclzY+9E4dNPDk6gD9v7WQ6DDMkvVFkKzyABoA/EJEDu5xYTD+9VMe8AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_episode_num": 830, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1cnB1s+FGMAWyUTasBjAF0lEdAiSWyGJvYOHV9lChoBkdAOfwAMlTm4mgHS2ZoCEdAiS2+g13t8nV9lChoBkdAhurm+sYEXGgHTegDaAhHQIlJ1IZqEe11fZQoaAZHQH7nuE/SpitoB03oA2gIR0CJcqe7L+xXdX2UKGgGR0B59jEFW4mUaAdN6AJoCEdAiYF0Cih37nV9lChoBkdAhkQ5flZHNGgHTegDaAhHQImprf1pTMt1fZQoaAZHQIKxJLytmthoB03oA2gIR0CJw/9c8kledX2UKGgGR0CAEMmCyyD7aAdNdgNoCEdAid8jHn2ZiXV9lChoBkdAdL0NbC79RGgHTb0BaAhHQInfnhIe5nV1fZQoaAZHQHI21nRLK3doB02YAWgIR0CJ9U2YOUdJdX2UKGgGR0CFlVaGpMpPaAdN6ANoCEdAifvY1He7+XV9lChoBkdAhfiwKa5PM2gHTegDaAhHQIpZerXDm8x1fZQoaAZHQIXGOxB3RohoB03oA2gIR0CKWf/YraufdX2UKGgGR0CE3S42jwhGaAdN6ANoCEdAinDNVBD5TXV9lChoBkdAhHBs+FDfFmgHTegDaAhHQIp3ALNOdoZ1fZQoaAZHQE4eocaOxSpoB0uEaAhHQIqHGXmeUY91fZQoaAZHQGlQ+sgdOqNoB019AWgIR0CKnwjMV1wHdX2UKGgGR0B6tnJDE3sHaAdNegJoCEdAiqfXiBGx2XV9lChoBkdAfBrrlNlAeWgHTYECaAhHQIqoPi704BF1fZQoaAZHQIdyNlNDc/NoB03oA2gIR0CLAY+r2g3+dX2UKGgGR0CH0b029+PSaAdN6ANoCEdAixltTtLL6nV9lChoBkdAht2p0OmR/2gHTegDaAhHQIsigHTqjah1fZQoaAZHQIdqwcFQl8hoB03oA2gIR0CLIuZ4wAU+dX2UKGgGR0CG+BajesPraAdN6ANoCEdAi3z4+B6KL3V9lChoBkdAhtiuAAhjfGgHTegDaAhHQIuV+5avA451fZQoaAZHQIYp5LIxQBRoB03oA2gIR0CLnrSP2f03dX2UKGgGR0CGvFfw7T2GaAdN6ANoCEdAi58XTmW+oXV9lChoBkdAYaSPnSv1UWgHS/5oCEdAi73gRChN/XV9lChoBkdAh1Ira24NJGgHTegDaAhHQIv4QJXyRSx1fZQoaAZHQIcb0zZYgaFoB03oA2gIR0CMEG+fRNRFdX2UKGgGR0CGzaK64Ds/aAdN6ANoCEdAjBkrFGXoknV9lChoBkdAhhuHrpqynmgHTegDaAhHQIw3/gWJrL11fZQoaAZHQIaUB00WM0hoB03oA2gIR0CMcvu76Hj7dX2UKGgGR0CG7Ycz67/XaAdN6ANoCEdAjIrg4ffXPXV9lChoBkdAhtrGdI5HVmgHTegDaAhHQIyTngzguRN1fZQoaAZHQIOlJc3VColoB03oA2gIR0CMst2FFlTWdX2UKGgGR0CDodCb+cYqaAdN6ANoCEdAjOzsRxtHhHV9lChoBkdAhgsFQuVX3mgHTegDaAhHQI0E3Tuv2Xd1fZQoaAZHQIV+IHE/B31oB03oA2gIR0CNDZR4QjD9dX2UKGgGR0CFoQqrilzmaAdN6ANoCEdAjS2EsJ6Y3XV9lChoBkdAhKrl8PWhAWgHTegDaAhHQI1mI20iQkp1fZQoaAZHQIXf52St/4JoB03oA2gIR0CNfquA7PpqdX2UKGgGR0CD5pIDHOryaAdN6ANoCEdAjYfMPBi1A3V9lChoBkdAhjGcqWkadmgHTegDaAhHQI2m1SS/0ul1fZQoaAZHQExnEv0yxiZoB0uLaAhHQI236djG1hN1fZQoaAZHQIKyDftQbddoB00kA2gIR0CNyLpwCKaYdX2UKGgGR0CGh/jghr31aAdN6ANoCEdAjfn6KUFB6nV9lChoBkdAhtbphOP/72gHTegDaAhHQI4CvPu5SWJ1fZQoaAZHQIWWDs6aLGdoB03oA2gIR0COMldpItlJdX2UKGgGR0CGzPPjXFtLaAdN6ANoCEdAjkPQNsnAqXV9lChoBkdAh1lKesgdO2gHTegDaAhHQI50l6cAiml1fZQoaAZHQIasqSV4X41oB03oA2gIR0COfWfBeokzdX2UKGgGR0CExLhtLteEaAdN6ANoCEdAjq8ooNNJv3V9lChoBkdAgxG40VJti2gHTegDaAhHQI7AJcs189h1fZQoaAZHQIZvrUiILw5oB03oA2gIR0CO8GgNgBtDdX2UKGgGR0CCjcXPZ7HAaAdN6ANoCEdAjvk9GAkLQXV9lChoBkdAg4W/eLvTgGgHTegDaAhHQI8rP3BYV7B1fZQoaAZHQISOf6ZYxL1oB03oA2gIR0CPO/J/XoTxdX2UKGgGR0CFEwJemelLaAdN6ANoCEdAj2wmygPEsXV9lChoBkdAhNl+3QUpNWgHTegDaAhHQI91oA80UGp1fZQoaAZHQIYntIbwSapoB03oA2gIR0CPpgOgg5imdX2UKGgGR0CFF7Rv3rUtaAdN6ANoCEdAj7be8Gs3hnV9lChoBkdAhBWIE0SAY2gHTegDaAhHQI/oIEhaC+V1fZQoaAZHQIRdIp2ECeVoB03oA2gIR0CP8NA6+36RdX2UKGgGR0CFOEP1ct5EaAdN6ANoCEdAkBDc+NcW03V9lChoBkdAg2/tTcZccGgHTegDaAhHQJAZrD2rXDp1fZQoaAZHQGmeSN4qwyJoB00iAWgIR0CQK/Cih37ldX2UKGgGR0BKL4DcM3IdaAdLNmgIR0CQLzLZBcAzdX2UKGgGR0CDDoM2m52AaAdN6ANoCEdAkDJJwbVBlnV9lChoBkdAgwQwQtjCpGgHTegDaAhHQJA22qPwNLF1fZQoaAZHQFLNvnr6ciJoB0tfaAhHQJA4PVG0/np1fZQoaAZHQECz8l5WzWxoB0sqaAhHQJA6yQp4KQd1fZQoaAZHQFJwKD0163RoB0tLaAhHQJA7Ycp9ZzR1fZQoaAZHQEPbvYODrZ9oB0ssaAhHQJA9c+B6KLt1fZQoaAZHQIO1wdjoZAJoB03oA2gIR0CQT726ClJpdX2UKGgGR0Bwp8+C9RJmaAdNIgFoCEdAkE/tbkfcOHV9lChoBkdAgm9gc1fmcWgHTegDaAhHQJBtpqO938p1fZQoaAZHQEYeziS7oStoB0uDaAhHQJB1uqlxffJ1fZQoaAZHQIJXD7Q9ic5oB03oA2gIR0CQeeRnOB1+dX2UKGgGR0CHo/j/+85CaAdN6ANoCEdAkI4XMyJsPHV9lChoBkdAgtBplar3kGgHTegDaAhHQJCORq33HrB1fZQoaAZHQGtVIxgy/K1oB00iAWgIR0CQn5Yzi0fHdX2UKGgGR0B9JAQI2OyWaAdN6ANoCEdAkLPNvXK8tnV9lChoBkdAgfEXIU8FIWgHTegDaAhHQJC3xX+2mYV1fZQoaAZHQIFdO9pRGc5oB02+AmgIR0CQysrdWQwLdX2UKGgGR0CHovZFG5MDaAdN6ANoCEdAkMt5PEbYLHV9lChoBkdAewM8jAzpHWgHTT0CaAhHQJDuPMEA5rB1fZQoaAZHQINvky+HrQhoB03oA2gIR0CQ8TCbMHKPdX2UKGgGR0CIeQAlOXVtaAdN6ANoCEdAkPUpOBUaQ3V9lChoBkdAYojcAzYVZmgHS6poCEdAkPiOkgwGnnV9lChoBkdAguQolD4QBmgHTegDaAhHQJEJBZs9B8h1fZQoaAZHQIh/4xWT5ftoB03oA2gIR0CRLo6wt8NQdX2UKGgGR0CHPywQlKK6aAdN6ANoCEdAkTKEc81XNnV9lChoBkdAhyDso+fRNWgHTegDaAhHQJE2AvL5h0B1fZQoaAZHwDJ/aYeDFqBoB0tIaAhHQJE3Brbg0j11fZQoaAZHQIh57961LJ1oB03oA2gIR0CRRtAz544ZdX2UKGgGR0CIRb0EovzwaAdN6ANoCEdAkWvBywOe8XV9lChoBkdAiDMXEhq0t2gHTegDaAhHQJFzQI/qxC91fZQoaAZHQIf8NfReC05oB03oA2gIR0CRdF/axoqTdX2UKGgGR0CHhu/Y8Md+aAdN6ANoCEdAkYROhbnoxHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 38725, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ", "__init__": "<function ReplayBuffer.__init__ at 0x7f6db1ddb550>", "add": "<function ReplayBuffer.add at 0x7f6db1ddb5e0>", "sample": "<function ReplayBuffer.sample at 0x7f6db1ddb670>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f6db1ddb700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1dd4ec0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -6.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}