ShreyasM commited on
Commit
ba112a4
·
1 Parent(s): d6175ef

Latest trained model

Browse files
PPO-LunarLander-V2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2b2d2c6a2a8508df8a7a1f7c83cc5c61f4b58a56eaa8e1a1ebce39ee6b4725d
3
+ size 147384
PPO-LunarLander-V2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-LunarLander-V2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1df65b7550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1df65b75e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1df65b7670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1df65b7700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1df65b7790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1df65b7820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1df65b78b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1df65b7940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1df65b79d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1df65b7a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1df65b7af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1df65b7b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1df65b93c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 114688,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678665812642539898,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOT8jxx/WC5Aji3PNBj3DzIqGq7Zl8jPAAAgD8AAIA/3tCEvsi2v7zEysy7fyHyub3+KD5FeQA7AACAPwAAgD9mEf08ROmuP03W2T7RPbm+tpaVvK/jtjwAAAAAAAAAAIANNT2PWli6GjhvvC/ELLZ2UB87Cl2dNQAAgD8AAIA/MwWJPFzPfrqgCru7mVO8uP4S9zp7gis4AACAPwAAgD/Nhaq9rsGCutdyLLoRyTe18h4SOpZoQzkAAIA/AACAP26N/74XgxG+qzfHOor9/jg4COk9whh0NQAAgD8AAIA/GnK+vXuuiLqa0iW6Cc0ittY51Tpuzj85AACAPwAAgD8zI1K9XCdmuo1g4DvAr1C20hkAO/JOO7UAAIA/AACAP2ZR4L1Iv466d7HMu0f1rTZMqUw7XSVVNwAAgD8AAIA/gMIZva+2CD1rFzU+7v7avVyWNzqahYU9AAAAAAAAAAAd3lu+duBOvPp6PjuS6SM5nqq1PcBkBLoAAIA/AACAP61eWb5aNQ297TDxvFdQm7uHk3U+NsNoPAAAgD8AAIA/5lC8vcP5EboI/+u6gqO2N1hsjzvmUmK0AACAPwAAgD+mQ4W+FEUEPiyxQj1z9hC+RtgxO1CDfT0AAAAAAAAAAPMRcb4HPAe97sVHOJpD8Db7v2o+As6FtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.1468799999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE7ngDP4eX8CUhpRSlIwBbJRNRgGMAXSUR0B9Skmois4ldX2UKGgGaAloD0MId0oH6//pW0CUhpRSlGgVTegDaBZHQH1KlVxS5y51fZQoaAZoCWgPQwhmL9tOW5slQJSGlFKUaBVLrmgWR0B9UeI9C/oJdX2UKGgGaAloD0MIiGh0B7HDYcCUhpRSlGgVTUoBaBZHQH1erzTWoWJ1fZQoaAZoCWgPQwjIs8u3PmJWQJSGlFKUaBVN6ANoFkdAfWwBltj0+XV9lChoBmgJaA9DCFwf1hu1aiNAlIaUUpRoFUvIaBZHQH1uYakyk9F1fZQoaAZoCWgPQwiWzRySWiJOQJSGlFKUaBVL12gWR0B9chWXC0ngdX2UKGgGaAloD0MIL2tiga94I0CUhpRSlGgVS4toFkdAfYxFm4Ajp3V9lChoBmgJaA9DCKYNh6WBXxrAlIaUUpRoFUuSaBZHQH2x0v0yxiZ1fZQoaAZoCWgPQwieJcgIqAtcQJSGlFKUaBVN6ANoFkdAfbi99+gDinV9lChoBmgJaA9DCL/09uci0mFAlIaUUpRoFU3oA2gWR0B9uMqYqoZRdX2UKGgGaAloD0MIcctHUtJ9VECUhpRSlGgVTegDaBZHQH5IZxzaK1p1fZQoaAZoCWgPQwj7rDJTWhlbQJSGlFKUaBVN6ANoFkdAfkj4LThHb3V9lChoBmgJaA9DCArZeRubrUnAlIaUUpRoFUu4aBZHQH5Mvo/zJ6p1fZQoaAZoCWgPQwjy0k1ikE5lQJSGlFKUaBVN6ANoFkdAfk1PEKmbb3V9lChoBmgJaA9DCBUZHZAEZ2FAlIaUUpRoFU3oA2gWR0B+UhCjUNKAdX2UKGgGaAloD0MIm6p7ZHMgUUCUhpRSlGgVTegDaBZHQH5Xl/hESdx1fZQoaAZoCWgPQwjQKjOl9RdeQJSGlFKUaBVN6ANoFkdAfmRLJCBwuXV9lChoBmgJaA9DCGvXhLTGIlZAlIaUUpRoFU3oA2gWR0B+bltWMju8dX2UKGgGaAloD0MIdQEvM2yU6D+UhpRSlGgVS75oFkdAfnGVJcxCY3V9lChoBmgJaA9DCBvzOuKQMTVAlIaUUpRoFUu4aBZHQH5zhDTjNpx1fZQoaAZoCWgPQwhywK4mT4EyQJSGlFKUaBVLr2gWR0B+dYvPC2tudX2UKGgGaAloD0MItrkxPWGzVECUhpRSlGgVTegDaBZHQH5898E3bVV1fZQoaAZoCWgPQwio/6z5cVxhQJSGlFKUaBVN6ANoFkdAforFmWdEs3V9lChoBmgJaA9DCBZQqKePG19AlIaUUpRoFU3oA2gWR0B+k95dGAkLdX2UKGgGaAloD0MIVW03wTeZN8CUhpRSlGgVS9FoFkdAfpjwGnn+ynV9lChoBmgJaA9DCIiBrn0B4UtAlIaUUpRoFUvraBZHQH6ac7hegL91fZQoaAZoCWgPQwgC8iVUcDBBwJSGlFKUaBVLtWgWR0B+n5ng5zYFdX2UKGgGaAloD0MIQ6m9iLaJWECUhpRSlGgVTegDaBZHQH6hZgogFHJ1fZQoaAZoCWgPQwjey31yFFhZQJSGlFKUaBVN6ANoFkdAfq5jZtelbnV9lChoBmgJaA9DCMYWghyUTF5AlIaUUpRoFU3oA2gWR0B+tLyZrpJPdX2UKGgGaAloD0MIzk9xHHi9IMCUhpRSlGgVS6JoFkdAft0KA8Swn3V9lChoBmgJaA9DCMrBbAKMemBAlIaUUpRoFU3oA2gWR0B/EYNgBtDVdX2UKGgGaAloD0MIXmkZqfc8KUCUhpRSlGgVTWwBaBZHQH8R19F4LTh1fZQoaAZoCWgPQwju68A5I71UQJSGlFKUaBVN6ANoFkdAfxq7Gecx03V9lChoBmgJaA9DCLmnqzsWElRAlIaUUpRoFU3oA2gWR0B/n9ZHNHH4dX2UKGgGaAloD0MIEHaKVQPgYUCUhpRSlGgVTegDaBZHQH+kbUkOZst1fZQoaAZoCWgPQwj5g4Hn3jpcQJSGlFKUaBVN6ANoFkdAf7Ea37UG3XV9lChoBmgJaA9DCMNGWb+ZMGBAlIaUUpRoFU3oA2gWR0B/wBrbg0j1dX2UKGgGaAloD0MIotKImX3iP0CUhpRSlGgVS7loFkdAf89HARChOHV9lChoBmgJaA9DCBwnhXmPo1FAlIaUUpRoFU3oA2gWR0B/1QA+6iCbdX2UKGgGaAloD0MIUdhF0QN3V0CUhpRSlGgVTegDaBZHQH/ZF4C6pYN1fZQoaAZoCWgPQwgIHAk02JT6v5SGlFKUaBVLumgWR0B/5VMg2ZRbdX2UKGgGaAloD0MI9YWQ8/4TM0CUhpRSlGgVS+9oFkdAf+dxPO6d2HV9lChoBmgJaA9DCAadEDpoEWJAlIaUUpRoFU3oA2gWR0CAARNY8uBddX2UKGgGaAloD0MIIcuCib+nYECUhpRSlGgVTegDaBZHQIAJYrDqGDd1fZQoaAZoCWgPQwiHUKVmDzlSQJSGlFKUaBVN6ANoFkdAgA3DCHh0hnV9lChoBmgJaA9DCK/QB8vYj1pAlIaUUpRoFU3oA2gWR0CADxcIqsltdX2UKGgGaAloD0MIq9BALJuCUkCUhpRSlGgVTegDaBZHQIAR2OMl1KZ1fZQoaAZoCWgPQwgriIGufcEiQJSGlFKUaBVL/mgWR0CAE+fms/6gdX2UKGgGaAloD0MIkrJF0m5BXECUhpRSlGgVTegDaBZHQIAdDN+so2J1fZQoaAZoCWgPQwgFNXwL60I9QJSGlFKUaBVLxGgWR0CAJuLAHmihdX2UKGgGaAloD0MInkXvVMBNIMCUhpRSlGgVS/JoFkdAgCkhzvJA+3V9lChoBmgJaA9DCC1CsRW0eGBAlIaUUpRoFU3oA2gWR0CAK8amXPZ7dX2UKGgGaAloD0MIuvQvSWWEQkCUhpRSlGgVS6hoFkdAgDr/X5FgD3V9lChoBmgJaA9DCLBx/bs+f1ZAlIaUUpRoFU3oA2gWR0CAPAtr9EThdX2UKGgGaAloD0MI6BN5knSlYECUhpRSlGgVTegDaBZHQIA8LOoo/iZ1fZQoaAZoCWgPQwgHRIgr5+hhQJSGlFKUaBVN6ANoFkdAgD7ctPHktHV9lChoBmgJaA9DCFFLcyuEIURAlIaUUpRoFUuzaBZHQIBA2UpuuRt1fZQoaAZoCWgPQwglJNI2/hhDQJSGlFKUaBVLjGgWR0CAf/xVAAyVdX2UKGgGaAloD0MIDMufbwtmX0CUhpRSlGgVTegDaBZHQICfcVgx8D11fZQoaAZoCWgPQwj4iJgSSVJcQJSGlFKUaBVN6ANoFkdAgKkBX0XgtXV9lChoBmgJaA9DCE0uxsA6U15AlIaUUpRoFU3oA2gWR0CArP8UmD15dX2UKGgGaAloD0MIqnzPSITpVkCUhpRSlGgVTegDaBZHQICxmWfK6nR1fZQoaAZoCWgPQwgN3lflwvxiQJSGlFKUaBVN6ANoFkdAgLJddVvMr3V9lChoBmgJaA9DCBedLLXe1yLAlIaUUpRoFUujaBZHQIC105XEIgN1fZQoaAZoCWgPQwiAttWsMwdeQJSGlFKUaBVN6ANoFkdAgLqSVnmJWXV9lChoBmgJaA9DCHFUbqKWqlpAlIaUUpRoFU3oA2gWR0CAv790A93bdX2UKGgGaAloD0MIhleSPFd+YECUhpRSlGgVTegDaBZHQIDCU0SAYpF1fZQoaAZoCWgPQwh1ApoIG79YQJSGlFKUaBVN6ANoFkdAgMepZGKAKHV9lChoBmgJaA9DCBWrBmFuhxVAlIaUUpRoFUv1aBZHQIDH3rt3OfN1fZQoaAZoCWgPQwgvxOqPMFVeQJSGlFKUaBVN6ANoFkdAgM9/W+XZ5HV9lChoBmgJaA9DCCuk/KTaNy5AlIaUUpRoFUvqaBZHQIDReucMEzR1fZQoaAZoCWgPQwh/FHXmHnIiQJSGlFKUaBVL0WgWR0CA05Q5WBBidX2UKGgGaAloD0MIDksDP6rVX0CUhpRSlGgVTegDaBZHQIDaODOC5Et1fZQoaAZoCWgPQwj2Cgvuh0VmQJSGlFKUaBVN6ANoFkdAgOxPCuU2UHV9lChoBmgJaA9DCFSp2QOtsFpAlIaUUpRoFU3oA2gWR0CA7eNOM2m6dX2UKGgGaAloD0MIG5yIfm3pYkCUhpRSlGgVTegDaBZHQIDuDQ5WBBl1fZQoaAZoCWgPQwgq4Qm9/uxdQJSGlFKUaBVN6ANoFkdAgPUfVy3kP3V9lChoBmgJaA9DCMTuO4bHIExAlIaUUpRoFU3oA2gWR0CBCIAhB7eEdX2UKGgGaAloD0MI6pEGt7VVMsCUhpRSlGgVS8NoFkdAgTKSVnmJWXV9lChoBmgJaA9DCBa9UwH3xEJAlIaUUpRoFUvHaBZHQIEz/9P1tfp1fZQoaAZoCWgPQwgoY3yYvewvQJSGlFKUaBVL0GgWR0CBR8i0OVgQdX2UKGgGaAloD0MI7Z+nAYOCY0CUhpRSlGgVTegDaBZHQIFIR6jWTX91fZQoaAZoCWgPQwj8cfvlkz0uQJSGlFKUaBVLvmgWR0CBSbRMvh60dX2UKGgGaAloD0MIN2+cFOa9Y0CUhpRSlGgVTegDaBZHQIFPuac7Qsx1fZQoaAZoCWgPQwjJBWfw985gQJSGlFKUaBVN6ANoFkdAgVCF8gIQe3V9lChoBmgJaA9DCCygUE+f9GFAlIaUUpRoFU3oA2gWR0CBU7QIldC3dX2UKGgGaAloD0MIBoTWw5eZLECUhpRSlGgVS7NoFkdAgVroT4+KTHV9lChoBmgJaA9DCFIoC19fkV1AlIaUUpRoFU3oA2gWR0CBX0gUUO/ddX2UKGgGaAloD0MIpUv/ktRiYECUhpRSlGgVTegDaBZHQIFoEUIsyzp1fZQoaAZoCWgPQwjZ7h6g+/ZfQJSGlFKUaBVN6ANoFkdAgWhgmReTmnV9lChoBmgJaA9DCMgljjwQL2BAlIaUUpRoFU3oA2gWR0CBdNJKaodddX2UKGgGaAloD0MIkKLO3EP+NECUhpRSlGgVS8toFkdAgXgyeiBXjnV9lChoBmgJaA9DCH1dhv907WFAlIaUUpRoFU3oA2gWR0CBeDpdKNADdX2UKGgGaAloD0MIZB75g4E/ZkCUhpRSlGgVTegDaBZHQIF7dvddmg91fZQoaAZoCWgPQwhKtOTxNChiQJSGlFKUaBVN6ANoFkdAgYaFw1ivxHV9lChoBmgJaA9DCIBmEB/Y6FRAlIaUUpRoFU3oA2gWR0CBnnQwblzVdX2UKGgGaAloD0MIBFlPrb4VYkCUhpRSlGgVTegDaBZHQIGlsKw6hg51fZQoaAZoCWgPQwjkhAmj2VRgQJSGlFKUaBVN6ANoFkdAgbZ0tZmqYXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 92,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-LunarLander-V2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05682aa2eafaddcaf5a154040aaf9bf6eb83814d70d5bcbe244a997cdb910f8
3
+ size 87929
PPO-LunarLander-V2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:801db4dbef8d2024b8595e0a6f0dd8791216e288e0891f407e7f97d3c2cc2977
3
+ size 43393
PPO-LunarLander-V2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-V2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 181.46 +/- 84.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1df65b7550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1df65b75e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1df65b7670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1df65b7700>", "_build": "<function ActorCriticPolicy._build at 0x7f1df65b7790>", "forward": "<function ActorCriticPolicy.forward at 0x7f1df65b7820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1df65b78b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1df65b7940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1df65b79d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1df65b7a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1df65b7af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1df65b7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1df65b93c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678665812642539898, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOT8jxx/WC5Aji3PNBj3DzIqGq7Zl8jPAAAgD8AAIA/3tCEvsi2v7zEysy7fyHyub3+KD5FeQA7AACAPwAAgD9mEf08ROmuP03W2T7RPbm+tpaVvK/jtjwAAAAAAAAAAIANNT2PWli6GjhvvC/ELLZ2UB87Cl2dNQAAgD8AAIA/MwWJPFzPfrqgCru7mVO8uP4S9zp7gis4AACAPwAAgD/Nhaq9rsGCutdyLLoRyTe18h4SOpZoQzkAAIA/AACAP26N/74XgxG+qzfHOor9/jg4COk9whh0NQAAgD8AAIA/GnK+vXuuiLqa0iW6Cc0ittY51Tpuzj85AACAPwAAgD8zI1K9XCdmuo1g4DvAr1C20hkAO/JOO7UAAIA/AACAP2ZR4L1Iv466d7HMu0f1rTZMqUw7XSVVNwAAgD8AAIA/gMIZva+2CD1rFzU+7v7avVyWNzqahYU9AAAAAAAAAAAd3lu+duBOvPp6PjuS6SM5nqq1PcBkBLoAAIA/AACAP61eWb5aNQ297TDxvFdQm7uHk3U+NsNoPAAAgD8AAIA/5lC8vcP5EboI/+u6gqO2N1hsjzvmUmK0AACAPwAAgD+mQ4W+FEUEPiyxQj1z9hC+RtgxO1CDfT0AAAAAAAAAAPMRcb4HPAe97sVHOJpD8Db7v2o+As6FtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE7ngDP4eX8CUhpRSlIwBbJRNRgGMAXSUR0B9Skmois4ldX2UKGgGaAloD0MId0oH6//pW0CUhpRSlGgVTegDaBZHQH1KlVxS5y51fZQoaAZoCWgPQwhmL9tOW5slQJSGlFKUaBVLrmgWR0B9UeI9C/oJdX2UKGgGaAloD0MIiGh0B7HDYcCUhpRSlGgVTUoBaBZHQH1erzTWoWJ1fZQoaAZoCWgPQwjIs8u3PmJWQJSGlFKUaBVN6ANoFkdAfWwBltj0+XV9lChoBmgJaA9DCFwf1hu1aiNAlIaUUpRoFUvIaBZHQH1uYakyk9F1fZQoaAZoCWgPQwiWzRySWiJOQJSGlFKUaBVL12gWR0B9chWXC0ngdX2UKGgGaAloD0MIL2tiga94I0CUhpRSlGgVS4toFkdAfYxFm4Ajp3V9lChoBmgJaA9DCKYNh6WBXxrAlIaUUpRoFUuSaBZHQH2x0v0yxiZ1fZQoaAZoCWgPQwieJcgIqAtcQJSGlFKUaBVN6ANoFkdAfbi99+gDinV9lChoBmgJaA9DCL/09uci0mFAlIaUUpRoFU3oA2gWR0B9uMqYqoZRdX2UKGgGaAloD0MIcctHUtJ9VECUhpRSlGgVTegDaBZHQH5IZxzaK1p1fZQoaAZoCWgPQwj7rDJTWhlbQJSGlFKUaBVN6ANoFkdAfkj4LThHb3V9lChoBmgJaA9DCArZeRubrUnAlIaUUpRoFUu4aBZHQH5Mvo/zJ6p1fZQoaAZoCWgPQwjy0k1ikE5lQJSGlFKUaBVN6ANoFkdAfk1PEKmbb3V9lChoBmgJaA9DCBUZHZAEZ2FAlIaUUpRoFU3oA2gWR0B+UhCjUNKAdX2UKGgGaAloD0MIm6p7ZHMgUUCUhpRSlGgVTegDaBZHQH5Xl/hESdx1fZQoaAZoCWgPQwjQKjOl9RdeQJSGlFKUaBVN6ANoFkdAfmRLJCBwuXV9lChoBmgJaA9DCGvXhLTGIlZAlIaUUpRoFU3oA2gWR0B+bltWMju8dX2UKGgGaAloD0MIdQEvM2yU6D+UhpRSlGgVS75oFkdAfnGVJcxCY3V9lChoBmgJaA9DCBvzOuKQMTVAlIaUUpRoFUu4aBZHQH5zhDTjNpx1fZQoaAZoCWgPQwhywK4mT4EyQJSGlFKUaBVLr2gWR0B+dYvPC2tudX2UKGgGaAloD0MItrkxPWGzVECUhpRSlGgVTegDaBZHQH5898E3bVV1fZQoaAZoCWgPQwio/6z5cVxhQJSGlFKUaBVN6ANoFkdAforFmWdEs3V9lChoBmgJaA9DCBZQqKePG19AlIaUUpRoFU3oA2gWR0B+k95dGAkLdX2UKGgGaAloD0MIVW03wTeZN8CUhpRSlGgVS9FoFkdAfpjwGnn+ynV9lChoBmgJaA9DCIiBrn0B4UtAlIaUUpRoFUvraBZHQH6ac7hegL91fZQoaAZoCWgPQwgC8iVUcDBBwJSGlFKUaBVLtWgWR0B+n5ng5zYFdX2UKGgGaAloD0MIQ6m9iLaJWECUhpRSlGgVTegDaBZHQH6hZgogFHJ1fZQoaAZoCWgPQwjey31yFFhZQJSGlFKUaBVN6ANoFkdAfq5jZtelbnV9lChoBmgJaA9DCMYWghyUTF5AlIaUUpRoFU3oA2gWR0B+tLyZrpJPdX2UKGgGaAloD0MIzk9xHHi9IMCUhpRSlGgVS6JoFkdAft0KA8Swn3V9lChoBmgJaA9DCMrBbAKMemBAlIaUUpRoFU3oA2gWR0B/EYNgBtDVdX2UKGgGaAloD0MIXmkZqfc8KUCUhpRSlGgVTWwBaBZHQH8R19F4LTh1fZQoaAZoCWgPQwju68A5I71UQJSGlFKUaBVN6ANoFkdAfxq7Gecx03V9lChoBmgJaA9DCLmnqzsWElRAlIaUUpRoFU3oA2gWR0B/n9ZHNHH4dX2UKGgGaAloD0MIEHaKVQPgYUCUhpRSlGgVTegDaBZHQH+kbUkOZst1fZQoaAZoCWgPQwj5g4Hn3jpcQJSGlFKUaBVN6ANoFkdAf7Ea37UG3XV9lChoBmgJaA9DCMNGWb+ZMGBAlIaUUpRoFU3oA2gWR0B/wBrbg0j1dX2UKGgGaAloD0MIotKImX3iP0CUhpRSlGgVS7loFkdAf89HARChOHV9lChoBmgJaA9DCBwnhXmPo1FAlIaUUpRoFU3oA2gWR0B/1QA+6iCbdX2UKGgGaAloD0MIUdhF0QN3V0CUhpRSlGgVTegDaBZHQH/ZF4C6pYN1fZQoaAZoCWgPQwgIHAk02JT6v5SGlFKUaBVLumgWR0B/5VMg2ZRbdX2UKGgGaAloD0MI9YWQ8/4TM0CUhpRSlGgVS+9oFkdAf+dxPO6d2HV9lChoBmgJaA9DCAadEDpoEWJAlIaUUpRoFU3oA2gWR0CAARNY8uBddX2UKGgGaAloD0MIIcuCib+nYECUhpRSlGgVTegDaBZHQIAJYrDqGDd1fZQoaAZoCWgPQwiHUKVmDzlSQJSGlFKUaBVN6ANoFkdAgA3DCHh0hnV9lChoBmgJaA9DCK/QB8vYj1pAlIaUUpRoFU3oA2gWR0CADxcIqsltdX2UKGgGaAloD0MIq9BALJuCUkCUhpRSlGgVTegDaBZHQIAR2OMl1KZ1fZQoaAZoCWgPQwgriIGufcEiQJSGlFKUaBVL/mgWR0CAE+fms/6gdX2UKGgGaAloD0MIkrJF0m5BXECUhpRSlGgVTegDaBZHQIAdDN+so2J1fZQoaAZoCWgPQwgFNXwL60I9QJSGlFKUaBVLxGgWR0CAJuLAHmihdX2UKGgGaAloD0MInkXvVMBNIMCUhpRSlGgVS/JoFkdAgCkhzvJA+3V9lChoBmgJaA9DCC1CsRW0eGBAlIaUUpRoFU3oA2gWR0CAK8amXPZ7dX2UKGgGaAloD0MIuvQvSWWEQkCUhpRSlGgVS6hoFkdAgDr/X5FgD3V9lChoBmgJaA9DCLBx/bs+f1ZAlIaUUpRoFU3oA2gWR0CAPAtr9EThdX2UKGgGaAloD0MI6BN5knSlYECUhpRSlGgVTegDaBZHQIA8LOoo/iZ1fZQoaAZoCWgPQwgHRIgr5+hhQJSGlFKUaBVN6ANoFkdAgD7ctPHktHV9lChoBmgJaA9DCFFLcyuEIURAlIaUUpRoFUuzaBZHQIBA2UpuuRt1fZQoaAZoCWgPQwglJNI2/hhDQJSGlFKUaBVLjGgWR0CAf/xVAAyVdX2UKGgGaAloD0MIDMufbwtmX0CUhpRSlGgVTegDaBZHQICfcVgx8D11fZQoaAZoCWgPQwj4iJgSSVJcQJSGlFKUaBVN6ANoFkdAgKkBX0XgtXV9lChoBmgJaA9DCE0uxsA6U15AlIaUUpRoFU3oA2gWR0CArP8UmD15dX2UKGgGaAloD0MIqnzPSITpVkCUhpRSlGgVTegDaBZHQICxmWfK6nR1fZQoaAZoCWgPQwgN3lflwvxiQJSGlFKUaBVN6ANoFkdAgLJddVvMr3V9lChoBmgJaA9DCBedLLXe1yLAlIaUUpRoFUujaBZHQIC105XEIgN1fZQoaAZoCWgPQwiAttWsMwdeQJSGlFKUaBVN6ANoFkdAgLqSVnmJWXV9lChoBmgJaA9DCHFUbqKWqlpAlIaUUpRoFU3oA2gWR0CAv790A93bdX2UKGgGaAloD0MIhleSPFd+YECUhpRSlGgVTegDaBZHQIDCU0SAYpF1fZQoaAZoCWgPQwh1ApoIG79YQJSGlFKUaBVN6ANoFkdAgMepZGKAKHV9lChoBmgJaA9DCBWrBmFuhxVAlIaUUpRoFUv1aBZHQIDH3rt3OfN1fZQoaAZoCWgPQwgvxOqPMFVeQJSGlFKUaBVN6ANoFkdAgM9/W+XZ5HV9lChoBmgJaA9DCCuk/KTaNy5AlIaUUpRoFUvqaBZHQIDReucMEzR1fZQoaAZoCWgPQwh/FHXmHnIiQJSGlFKUaBVL0WgWR0CA05Q5WBBidX2UKGgGaAloD0MIDksDP6rVX0CUhpRSlGgVTegDaBZHQIDaODOC5Et1fZQoaAZoCWgPQwj2Cgvuh0VmQJSGlFKUaBVN6ANoFkdAgOxPCuU2UHV9lChoBmgJaA9DCFSp2QOtsFpAlIaUUpRoFU3oA2gWR0CA7eNOM2m6dX2UKGgGaAloD0MIG5yIfm3pYkCUhpRSlGgVTegDaBZHQIDuDQ5WBBl1fZQoaAZoCWgPQwgq4Qm9/uxdQJSGlFKUaBVN6ANoFkdAgPUfVy3kP3V9lChoBmgJaA9DCMTuO4bHIExAlIaUUpRoFU3oA2gWR0CBCIAhB7eEdX2UKGgGaAloD0MI6pEGt7VVMsCUhpRSlGgVS8NoFkdAgTKSVnmJWXV9lChoBmgJaA9DCBa9UwH3xEJAlIaUUpRoFUvHaBZHQIEz/9P1tfp1fZQoaAZoCWgPQwgoY3yYvewvQJSGlFKUaBVL0GgWR0CBR8i0OVgQdX2UKGgGaAloD0MI7Z+nAYOCY0CUhpRSlGgVTegDaBZHQIFIR6jWTX91fZQoaAZoCWgPQwj8cfvlkz0uQJSGlFKUaBVLvmgWR0CBSbRMvh60dX2UKGgGaAloD0MIN2+cFOa9Y0CUhpRSlGgVTegDaBZHQIFPuac7Qsx1fZQoaAZoCWgPQwjJBWfw985gQJSGlFKUaBVN6ANoFkdAgVCF8gIQe3V9lChoBmgJaA9DCCygUE+f9GFAlIaUUpRoFU3oA2gWR0CBU7QIldC3dX2UKGgGaAloD0MIBoTWw5eZLECUhpRSlGgVS7NoFkdAgVroT4+KTHV9lChoBmgJaA9DCFIoC19fkV1AlIaUUpRoFU3oA2gWR0CBX0gUUO/ddX2UKGgGaAloD0MIpUv/ktRiYECUhpRSlGgVTegDaBZHQIFoEUIsyzp1fZQoaAZoCWgPQwjZ7h6g+/ZfQJSGlFKUaBVN6ANoFkdAgWhgmReTmnV9lChoBmgJaA9DCMgljjwQL2BAlIaUUpRoFU3oA2gWR0CBdNJKaodddX2UKGgGaAloD0MIkKLO3EP+NECUhpRSlGgVS8toFkdAgXgyeiBXjnV9lChoBmgJaA9DCH1dhv907WFAlIaUUpRoFU3oA2gWR0CBeDpdKNADdX2UKGgGaAloD0MIZB75g4E/ZkCUhpRSlGgVTegDaBZHQIF7dvddmg91fZQoaAZoCWgPQwhKtOTxNChiQJSGlFKUaBVN6ANoFkdAgYaFw1ivxHV9lChoBmgJaA9DCIBmEB/Y6FRAlIaUUpRoFU3oA2gWR0CBnnQwblzVdX2UKGgGaAloD0MIBFlPrb4VYkCUhpRSlGgVTegDaBZHQIGlsKw6hg51fZQoaAZoCWgPQwjkhAmj2VRgQJSGlFKUaBVN6ANoFkdAgbZ0tZmqYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 92, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 181.46367022442368, "std_reward": 84.12137704416266, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T00:12:13.217178"}